1.初始化SPI,MCU各引腳。
當(dāng)有數(shù)據(jù)接收或發(fā)送狀態(tài)聲明時(shí),有中斷和查詢兩種方式。GDO0與GDO2引腳輸出至MCU引腳,若要用中斷則要接至MCU外部中斷引腳,查詢時(shí)則可用GPIO。
2.復(fù)位CC1101。
3.初始化CC1101。(寫操作時(shí)可從SO中讀出CC1101狀態(tài))
初始化后CC1100為IDLE狀態(tài).
4.狀態(tài)機(jī)轉(zhuǎn)換,寫/讀FIFO數(shù)據(jù)。
每次寫操作時(shí)SO返回的值為寫操作前的CC1100狀態(tài)值,具體值見(jiàn)Table20;讀狀態(tài)命令為當(dāng)前CC1100狀態(tài)值,具體值見(jiàn)寄存器0X35說(shuō)明;注意兩者區(qū)別。
快速認(rèn)識(shí)Cc1100
Cc1100可以工作在同步模式下,代價(jià)是:MCU自己控制前導(dǎo)碼。本系統(tǒng)中,Cc1100將工作在異步模式下。
知識(shí)點(diǎn)
Head Byte:在 引腳 Cc1100.Csn 有效后,通過(guò)SPI總線寫入 Cc1100的第一個(gè)字節(jié)。
Status Byte: 在寫入 HeadByte 的同時(shí),MCU 得到 Status Byte。
Burst Bit:在 Head Byte 中的一個(gè) Bit, 有效值=="1",無(wú)效值=="0"
GDO0:
GDO0可用作FIFO狀態(tài)輸出,載波感應(yīng)(CS),時(shí)鐘輸出,GDO0 腳也能用作集成于芯片的模擬溫度傳感器(未用).配置寄存器為IOCFG0(0X02),現(xiàn)在配置為RX模式下數(shù)據(jù)狀態(tài)反應(yīng)輸出.
GDO1:
GDO1與SPI的SO共用引腳,默認(rèn)狀態(tài)下為3態(tài),當(dāng)CSn為低電平時(shí),此引腳SPI的SO功能生效。配置寄存器為IOCFG0(0X01),現(xiàn)在配置為空閑狀態(tài)下3態(tài),SPI模式下SO.
GDO2:
GDO2可用作FIFO狀態(tài)輸出,載波感應(yīng)(CS),時(shí)鐘輸出,配置寄存器為IOCFG0(0X00),現(xiàn)在配置為載波感應(yīng)(CS)輸出.
TXOFF_MODE/RXOFF_MODE:
注意,此配置為在數(shù)據(jù)包被發(fā)送/接收后狀態(tài)機(jī)狀態(tài)決定位,僅是在發(fā)生發(fā)送或者接收后動(dòng)作;當(dāng)為IDLE時(shí)發(fā)SRX/STX后狀態(tài)機(jī)不按此配置運(yùn)行。TX/RX后要校準(zhǔn)。
功率放大控制(PATABLE):
0X3E為功率寫入地址,0X22為為功率配置寄存器。PATABLE 是一個(gè)8字節(jié)表,定義了8個(gè)PA 功率值。這個(gè)表從最低位(0)到最高位(7)可讀和寫,一次一位。一個(gè)索引計(jì)數(shù)器用來(lái)控制對(duì)這個(gè)表的訪問(wèn)。
每讀出或?qū)懭氡碇械囊粋(gè)字節(jié),計(jì)數(shù)器就加 1。當(dāng) CSn 為高時(shí),計(jì)數(shù)值置為最小值。當(dāng)達(dá)到最大值時(shí),計(jì)數(shù)器由零重新開(kāi)始計(jì)數(shù)。
FREND0.PA_POWER(2:0)從8個(gè)功率值中選擇1個(gè),且振幅為相應(yīng)數(shù)等級(jí)。
異步模式:
在此模式下,CC1101中的MCU的若干支持機(jī)制會(huì)停用,包括數(shù)據(jù)包硬件處理,F(xiàn)IFO 緩沖,數(shù)據(jù)白化,交錯(cuò)(interleaver)和前向糾錯(cuò)(FEC) ,曼徹斯特編碼(Manchester encoding);
MSK不支持異步模式;
PKTCTRL0.PKT_FORMAT == 3 使能異步模式,GDO0為input,GDO0, GDO1或GDO2為output 相應(yīng)配置位為IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG IOCFG2.GDO2_CFG;
電磁波激活(WOR):
在WOR濾波使用之前RC振蕩器必須啟用,RC振蕩器是 WOR 定時(shí)器的時(shí)鐘源.在WOR下,收到信號(hào)后會(huì)自動(dòng)進(jìn)入RX模式.
載波感應(yīng)(CS)與RSSI:
因此兩配置相互有連系,所以一起論述.
RSSI 只能在RX模式下才能有效,作用為對(duì)當(dāng)前信號(hào)質(zhì)量評(píng)估,信號(hào)質(zhì)量可從RSSI寄存器讀出.RSSI信號(hào)強(qiáng)度可從0X34取出.
RSSI(信號(hào)強(qiáng)度)計(jì)算公式: 注:此為433M下,結(jié)果為負(fù)數(shù),
RSSI_dBm=(RSSI-256)/2-74 (RSSI>=128)
RSSI_dBm= (RSSI/2)-74 (RSSI<128)
CS 只在RX模式下才能有效,當(dāng)信號(hào)質(zhì)量高于設(shè)定門限值時(shí),CS狀態(tài)將會(huì)被聲明。現(xiàn)在配置為GDO2輸出感應(yīng)狀態(tài).
CS門限值由以下4個(gè)寄存器決定
?? AGCCTRL2.MAX_LNA_GAIN
?? AGCCTRL2.MAX_DVGA_GAIN
?? AGCCTRL1.CARRIER_SENSE_ABS_THR
?? AGCCTRL2.MAGN_TARGET
?? AGCCTRL2.MAX_DVGA_GAIN
?? AGCCTRL1.CARRIER_SENSE_ABS_THR
?? AGCCTRL2.MAGN_TARGET
CS門限值計(jì)算公式: 表默認(rèn)門限值 + (MAGN_TARGET-33) + CARRIER_SENSE_ABS_THR.
表默認(rèn)門限值見(jiàn)table29,table30. 由AGCCTRL2.MAX_LNA_GAIN AGCCTRL2.MAX_DVGA_GAIN 決定.
默認(rèn)門限值表只給了兩個(gè)數(shù)據(jù)速率下的值,其余由自己測(cè).我們對(duì)此要求不是太高,可以參考用這個(gè)表.
CARRIER_SENSE_ABS_THR為對(duì)應(yīng)表中-7~7的值,最后單位為dBm.
Example:
在250K下AGCCTRL2.MAX_LNA_GAIN = 00 AGCCTRL2.MAX_DVGA_GAIN = 00 得出表中為-90.5
MAGN_TARGET = 7(42), CARRIER_SENSE_ABS_THR = 1(1)
門限為-90.5 + (42-33) + 1= -82.5dBm
清理信道訪問(wèn)(CCA):
清理信道訪問(wèn)用來(lái)指示當(dāng)前信號(hào)是空閑還是忙。當(dāng)忙時(shí)是否丟棄當(dāng)前數(shù)據(jù),寄存器MCSM1.CCA_MODE決定是否丟棄.默認(rèn)配置為保留當(dāng)前寄存器中數(shù)據(jù),丟棄下一步要處理數(shù)據(jù).
數(shù)據(jù)FIFO:
當(dāng)TX操作時(shí),由MCU控制,溢出時(shí)CC1101出錯(cuò);當(dāng)RX操作時(shí),讀空時(shí)CC1101出錯(cuò)
RX FIFO 和 TX FIFO 中的字節(jié)數(shù)也能分別從狀態(tài)寄存器 RXBYTES.NUM_RXBYTES和TXBYTES.NUM_TXBYTES 中讀出
4 位 FIFOTHR.FIFO_THR 設(shè)置用來(lái)控制FIFO 門限點(diǎn)
讀單字節(jié)時(shí),,CSn繼續(xù)保持低;。突發(fā)訪問(wèn)方式允許一地址字節(jié),然后是連續(xù)的數(shù)據(jù)字節(jié),直到通過(guò)設(shè)置 CSn 為高來(lái)斷訪問(wèn)
當(dāng)寫操作時(shí),最后一個(gè)字節(jié)被傳送至 SI 腳后, 被 SO腳接收的狀態(tài)位會(huì)表明在 TX FIFO中只有一個(gè)字節(jié)是空閑,
寄存器分類
Configration Registers |
共47個(gè),可讀,可寫 0x00~0x2E |
|||
Status Registers |
共14個(gè),只讀 0x30~0x3D |
|||
Command Strobe |
共14個(gè),只寫 尋址空間:0x30~0x3D
14個(gè)地址,對(duì)相應(yīng)的地址進(jìn)行寫, 就相當(dāng)于激活了對(duì)應(yīng)的命令 |
本系統(tǒng)是用到的Strobe: CC1100_STROBE_RESET |
||
TX FIFO | 共64個(gè),只寫 | |||
RX FIFO | 共64個(gè),只讀 | |||
Status(Command)Registers操作:
當(dāng)?shù)刂窞?X30~0X3D時(shí)
burst為1:對(duì)Status Registers的操作
Status Registers只可讀,且只能一次讀一個(gè)字節(jié),不可寫
burst為0:對(duì)Command Registers操作
寄存器的訪問(wèn)和一個(gè)寄存器的操作一樣,但沒(méi)有數(shù)據(jù)被傳輸.寫完畢后,CC1100便執(zhí)行相應(yīng)操作.
讀寫FIFO,有兩種模式:?jiǎn)巫止?jié)讀寫;Burst讀寫。
單字節(jié)讀寫時(shí)序:
1 Cc1100.Csn有效。
2 寫入Head Byte。
3 讀、寫一個(gè)1字節(jié)。
4 Cc1100.Csn無(wú)效。
#include <reg52.h> #include <intrins.h> #define INT8U unsigned char #define INT16U unsigned int #define WRITE_BURST 0x40 //連續(xù)寫入 #define READ_SINGLE 0x80 //讀 #define READ_BURST 0xC0 //連續(xù)讀 #define BYTES_IN_RXFIFO 0x7F //接收緩沖區(qū)的有效字節(jié)數(shù) #define CRC_OK 0x80 //CRC校驗(yàn)通過(guò)位標(biāo)志 //***************************************************************************************** sbit GDO0 =P1^3; sbit GDO2 =P3^2; sbit MISO =P1^6; sbit MOSI =P1^5; sbit SCK =P1^7; sbit CSN =P1^2; //***************************************************************************************** sbit LED2 =P3^4; sbit LED1 =P3^5; sbit KEY1 =P3^6; sbit KEY2 =P3^7; //***************************************************************************************** sbit led3=P2^3; sbit led2=P2^2; sbit led1=P2^1; sbit led0=P2^0; //***************************************************************************************** //INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60}; INT8U PaTabel[8] = {0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0};//修改發(fā)射功率 //***************************************************************************************** void SpiInit(void); void CpuInit(void); void RESET_CC1100(void); void POWER_UP_RESET_CC1100(void); void halSpiWriteReg(INT8U addr, INT8U value); void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count); void halSpiStrobe(INT8U strobe); INT8U halSpiReadReg(INT8U addr); void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count); INT8U halSpiReadStatus(INT8U addr); void halRfWriteRfSettings(void); void halRfSendPacket(INT8U *txBuffer, INT8U size); INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length); //***************************************************************************************** // CC1100 STROBE, CONTROL AND STATUS REGSITER #define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration #define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration #define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration #define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds #define CCxxx0_SYNC1 0x04 // Sync word, high INT8U #define CCxxx0_SYNC0 0x05 // Sync word, low INT8U #define CCxxx0_PKTLEN 0x06 // Packet length #define CCxxx0_PKTCTRL1 0x07 // Packet automation control #define CCxxx0_PKTCTRL0 0x08 // Packet automation control #define CCxxx0_ADDR 0x09 // Device address #define CCxxx0_CHANNR 0x0A // Channel number #define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control #define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control #define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U #define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U #define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U #define CCxxx0_MDMCFG4 0x10 // Modem configuration #define CCxxx0_MDMCFG3 0x11 // Modem configuration #define CCxxx0_MDMCFG2 0x12 // Modem configuration #define CCxxx0_MDMCFG1 0x13 // Modem configuration #define CCxxx0_MDMCFG0 0x14 // Modem configuration #define CCxxx0_DEVIATN 0x15 // Modem deviation setting #define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration #define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration #define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration #define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration #define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration #define CCxxx0_AGCCTRL2 0x1B // AGC control #define CCxxx0_AGCCTRL1 0x1C // AGC control #define CCxxx0_AGCCTRL0 0x1D // AGC control #define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout #define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout #define CCxxx0_WORCTRL 0x20 // Wake On Radio control #define CCxxx0_FREND1 0x21 // Front end RX configuration #define CCxxx0_FREND0 0x22 // Front end TX configuration #define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration #define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration #define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration #define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration #define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration #define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration #define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control #define CCxxx0_PTEST 0x2A // Production test #define CCxxx0_AGCTEST 0x2B // AGC test #define CCxxx0_TEST2 0x2C // Various test settings #define CCxxx0_TEST1 0x2D // Various test settings #define CCxxx0_TEST0 0x2E // Various test settings // Strobe commands #define CCxxx0_SRES 0x30 // Reset chip. #define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1). // If in RX/TX: Go to a wait state where only the synthesizer is // running (for quick RX / TX turnaround). #define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator. #define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off // (enables quick start). #define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and // MCSM0.FS_AUTOCAL=1. #define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if // MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled: // Only go to TX if channel is clear. #define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit // Wake-On-Radio mode if applicable. #define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer #define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio) #define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high. #define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer. #define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer. #define CCxxx0_SWORRST 0x3C // Reset real time clock. #define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two // INT8Us for simpler software. #define CCxxx0_PARTNUM 0x30 #define CCxxx0_VERSION 0x31 #define CCxxx0_FREQEST 0x32 #define CCxxx0_LQI 0x33 #define CCxxx0_RSSI 0x34 #define CCxxx0_MARCSTATE 0x35 #define CCxxx0_WORTIME1 0x36 #define CCxxx0_WORTIME0 0x37 #define CCxxx0_PKTSTATUS 0x38 #define CCxxx0_VCO_VC_DAC 0x39 #define CCxxx0_TXBYTES 0x3A #define CCxxx0_RXBYTES 0x3B #define CCxxx0_PATABLE 0x3E #define CCxxx0_TXFIFO 0x3F #define CCxxx0_RXFIFO 0x3F // RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers typedef struct S_RF_SETTINGS { INT8U FSCTRL2; //自已加的 INT8U FSCTRL1; // Frequency synthesizer control. INT8U FSCTRL0; // Frequency synthesizer control. INT8U FREQ2; // Frequency control word, high INT8U. INT8U FREQ1; // Frequency control word, middle INT8U. INT8U FREQ0; // Frequency control word, low INT8U. INT8U MDMCFG4; // Modem configuration. INT8U MDMCFG3; // Modem configuration. INT8U MDMCFG2; // Modem configuration. INT8U MDMCFG1; // Modem configuration. INT8U MDMCFG0; // Modem configuration. INT8U CHANNR; // Channel number. INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled). INT8U FREND1; // Front end RX configuration. INT8U FREND0; // Front end RX configuration. INT8U MCSM0; // Main Radio Control State Machine configuration. INT8U FOCCFG; // Frequency Offset Compensation Configuration. INT8U BSCFG; // Bit synchronization Configuration. INT8U AGCCTRL2; // AGC control. INT8U AGCCTRL1; // AGC control. INT8U AGCCTRL0; // AGC control. INT8U FSCAL3; // Frequency synthesizer calibration. INT8U FSCAL2; // Frequency synthesizer calibration. INT8U FSCAL1; // Frequency synthesizer calibration. INT8U FSCAL0; // Frequency synthesizer calibration. INT8U FSTEST; // Frequency synthesizer calibration control INT8U TEST2; // Various test settings. INT8U TEST1; // Various test settings. INT8U TEST0; // Various test settings. INT8U IOCFG2; // GDO2 output pin configuration INT8U IOCFG0; // GDO0 output pin configuration INT8U PKTCTRL1; // Packet automation control. INT8U PKTCTRL0; // Packet automation control. INT8U ADDR; // Device address. INT8U PKTLEN; // Packet length. } RF_SETTINGS; ///////////////////////////////////////////////////////////////// const RF_SETTINGS rfSettings = { 0x00, 0x08, // FSCTRL1 Frequency synthesizer control. 0x00, // FSCTRL0 Frequency synthesizer control. 0x10, // FREQ2 Frequency control word, high byte. 0xA7, // FREQ1 Frequency control word, middle byte. 0x62, // FREQ0 Frequency control word, low byte. 0x5B, // MDMCFG4 Modem configuration. //0xf6, // MDMCFG4 chang by allen 0xF8, // MDMCFG3 Modem configuration. //0x83, // MDMCFG3 chang by allen data rate = 2.398K 0x03, // MDMCFG2 Modem configuration. 0x22, // MDMCFG1 Modem configuration. 0xF8, // MDMCFG0 Modem configuration. 0x00, // CHANNR Channel number. 0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled). 0xB6, // FREND1 Front end RX configuration. 0x10, // FREND0 Front end RX configuration. 0x18, // MCSM0 Main Radio Control State Machine configuration. 0x1D, // FOCCFG Frequency Offset Compensation Configuration. 0x1C, // BSCFG Bit synchronization Configuration. 0xC7, // AGCCTRL2 AGC control. 0x00, // AGCCTRL1 AGC control. 0xB2, // AGCCTRL0 AGC control. 0xEA, // FSCAL3 Frequency synthesizer calibration. 0x2A, // FSCAL2 Frequency synthesizer calibration. 0x00, // FSCAL1 Frequency synthesizer calibration. 0x11, // FSCAL0 Frequency synthesizer calibration. 0x59, // FSTEST Frequency synthesizer calibration. 0x81, // TEST2 Various test settings. 0x35, // TEST1 Various test settings. 0x09, // TEST0 Various test settings. 0x0B, // IOCFG2 GDO2 output pin configuration. 0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation. 0x04, // PKTCTRL1 Packet automation control. //0x05, // PKTCTRL0 Packet automation control. 0x01, //PKTCTRL0 crc disable chang by allen at 09.12.24 0x00, // ADDR Device address. 0x0c // PKTLEN Packet length. }; //***************************************************************************************** //函數(shù)名:delay(unsigned int s) //輸入:時(shí)間 //輸出:無(wú) //功能描述:普通廷時(shí),內(nèi)部用 //***************************************************************************************** static void delay(unsigned int s) { unsigned int i; for(i=0; i<s; i++); for(i=0; i<s; i++); } void halWait(INT16U timeout) { do { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); } while (--timeout); } void SpiInit(void) { CSN=0; SCK=0; CSN=1; } /***************************************************************************************** //函數(shù)名:CpuInit() //輸入:無(wú) //輸出:無(wú) //功能描述:SPI初始化程序 /*****************************************************************************************/ void CpuInit(void) { SpiInit(); delay(5000); } //***************************************************************************************** //函數(shù)名:SpisendByte(INT8U dat) //輸入:發(fā)送的數(shù)據(jù) //輸出:無(wú) //功能描述:SPI發(fā)送一個(gè)字節(jié) //***************************************************************************************** INT8U SpiTxRxByte(INT8U dat) { INT8U i,temp; temp = 0; SCK = 0; for(i=0; i<8; i++) { if(dat & 0x80) { MOSI = 1; } else MOSI = 0; dat <<= 1; SCK = 1; _nop_(); _nop_(); temp <<= 1; if(MISO)temp++; SCK = 0; _nop_(); _nop_(); } return temp; } //***************************************************************************************** //函數(shù)名:void RESET_CC1100(void) //輸入:無(wú) //輸出:無(wú) //功能描述:復(fù)位CC1100 //***************************************************************************************** void RESET_CC1100(void) { CSN = 0; while (MISO); SpiTxRxByte(CCxxx0_SRES); //寫入復(fù)位命令 while (MISO); CSN = 1; } //***************************************************************************************** //函數(shù)名:void POWER_UP_RESET_CC1100(void) //輸入:無(wú) //輸出:無(wú) //功能描述:上電復(fù)位CC1100 //***************************************************************************************** void POWER_UP_RESET_CC1100(void) { CSN = 1; halWait(1); CSN = 0; halWait(1); CSN = 1; halWait(41); RESET_CC1100(); //復(fù)位CC1100 } //***************************************************************************************** //函數(shù)名:void halSpiWriteReg(INT8U addr, INT8U value) //輸入:地址和配置字 //輸出:無(wú) //功能描述:SPI寫寄存器 //***************************************************************************************** void halSpiWriteReg(INT8U addr, INT8U value) { CSN = 0; while (MISO); SpiTxRxByte(addr); //寫地址 SpiTxRxByte(value); //寫入配置 CSN = 1; } //***************************************************************************************** //函數(shù)名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count) //輸入:地址,寫入緩沖區(qū),寫入個(gè)數(shù) //輸出:無(wú) //功能描述:SPI連續(xù)寫配置寄存器 //***************************************************************************************** void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count) { INT8U i, temp; temp = addr | WRITE_BURST; CSN = 0; while (MISO); SpiTxRxByte(temp); for (i = 0; i < count; i++) { SpiTxRxByte(buffer[i]); } CSN = 1; } //***************************************************************************************** //函數(shù)名:void halSpiStrobe(INT8U strobe) //輸入:命令 //輸出:無(wú) //功能描述:SPI寫命令 //***************************************************************************************** void halSpiStrobe(INT8U strobe) { CSN = 0; while (MISO); SpiTxRxByte(strobe); //寫入命令 CSN = 1; } //***************************************************************************************** //函數(shù)名:INT8U halSpiReadReg(INT8U addr) //輸入:地址 //輸出:該寄存器的配置字 //功能描述:SPI讀寄存器 //***************************************************************************************** INT8U halSpiReadReg(INT8U addr) { INT8U temp, value; temp = addr|READ_SINGLE;//讀寄存器命令 CSN = 0; while (MISO); SpiTxRxByte(temp); value = SpiTxRxByte(0); CSN = 1; return value; } //***************************************************************************************** //函數(shù)名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count) //輸入:地址,讀出數(shù)據(jù)后暫存的緩沖區(qū),讀出配置個(gè)數(shù) //輸出:無(wú) //功能描述:SPI連續(xù)寫配置寄存器 //***************************************************************************************** void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count) { INT8U i,temp; temp = addr | READ_BURST; //寫入要讀的配置寄存器地址和讀命令 CSN = 0; while (MISO); SpiTxRxByte(temp); for (i = 0; i < count; i++) { buffer[i] = SpiTxRxByte(0); } CSN = 1; } //***************************************************************************************** //函數(shù)名:INT8U halSpiReadReg(INT8U addr) //輸入:地址 //輸出:該狀態(tài)寄存器當(dāng)前值 //功能描述:SPI讀狀態(tài)寄存器 //***************************************************************************************** INT8U halSpiReadStatus(INT8U addr) { INT8U value,temp; temp = addr | READ_BURST; //寫入要讀的狀態(tài)寄存器的地址同時(shí)寫入讀命令 CSN = 0; while (MISO); SpiTxRxByte(temp); value = SpiTxRxByte(0); CSN = 1; return value; } //***************************************************************************************** //函數(shù)名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings) //輸入:無(wú) //輸出:無(wú) //功能描述:配置CC1100的寄存器 //***************************************************************************************** void halRfWriteRfSettings(void) { halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);//自已加的 // Write register settings halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1); halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0); halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2); halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1); halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0); halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4); halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3); halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2); halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1); halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0); halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR); halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN); halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1); halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0); halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 ); halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG); halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG); halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2); halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1); halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0); halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3); halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2); halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1); halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0); halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST); halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2); halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1); halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0); halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2); halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0); halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1); halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0); halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR); halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN); } //***************************************************************************************** //函數(shù)名:void halRfSendPacket(INT8U *txBuffer, INT8U size) //輸入:發(fā)送的緩沖區(qū),發(fā)送數(shù)據(jù)個(gè)數(shù) //輸出:無(wú) //功能描述:CC1100發(fā)送一組數(shù)據(jù) //***************************************************************************************** void halRfSendPacket(INT8U *txBuffer, INT8U size) { halSpiWriteReg(CCxxx0_TXFIFO, size); halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //寫入要發(fā)送的數(shù)據(jù) halSpiStrobe(CCxxx0_STX); //進(jìn)入發(fā)送模式發(fā)送數(shù)據(jù) // Wait for GDO0 to be set -> sync transmitted while (!GDO0); // Wait for GDO0 to be cleared -> end of packet while (GDO0); halSpiStrobe(CCxxx0_SFTX); delay(20); } void setRxMode(void) { halSpiStrobe(CCxxx0_SRX); //進(jìn)入接收狀態(tài) } /* // Bit masks corresponding to STATE[2:0] in the status byte returned on MISO #define CCxx00_STATE_BM 0x70 #define CCxx00_FIFO_BYTES_AVAILABLE_BM 0x0F #define CCxx00_STATE_TX_BM 0x20 #define CCxx00_STATE_TX_UNDERFLOW_BM 0x70 #define CCxx00_STATE_RX_BM 0x10 #define CCxx00_STATE_RX_OVERFLOW_BM 0x60 #define CCxx00_STATE_IDLE_BM 0x00 static INT8U RfGetRxStatus(void) { INT8U temp, spiRxStatus1,spiRxStatus2; INT8U i=4;// 循環(huán)測(cè)試次數(shù) temp = CCxxx0_SNOP|READ_SINGLE;//讀寄存器命令 CSN = 0; while (MISO); SpiTxRxByte(temp); spiRxStatus1 = SpiTxRxByte(0); do { SpiTxRxByte(temp); spiRxStatus2 = SpiTxRxByte(0); if(spiRxStatus1 == spiRxStatus2) { if( (spiRxStatus1 & CCxx00_STATE_BM) == CCxx00_STATE_RX_OVERFLOW_BM) { halSpiStrobe(CCxxx0_SFRX); return 0; } return 1; } spiRxStatus1=spiRxStatus2; } while(i--); CSN = 1; return 0; } */ INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length) { INT8U status[2]; INT8U packetLength; INT8U i=(*length)*4; // 具體多少要根據(jù)datarate和length來(lái)決定 halSpiStrobe(CCxxx0_SRX); //進(jìn)入接收狀態(tài) //delay(5); //while (!GDO1); //while (GDO1); delay(2); while (GDO0) { delay(2); --i; if(i<1) return 0; } if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字節(jié)數(shù)不為0 { //LED2 = 0; packetLength = halSpiReadReg(CCxxx0_RXFIFO);//讀出第一個(gè)字節(jié),此字節(jié)為該幀數(shù)據(jù)長(zhǎng)度 //if (packetLength <= *length) //如果所要的有效數(shù)據(jù)長(zhǎng)度小于等于接收到的數(shù)據(jù)包的長(zhǎng)度 if(packetLength == 0x08) { //halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //讀出所有接收到的數(shù)據(jù) halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, 8); //讀出所有接收到的數(shù)據(jù) *length = packetLength; //把接收數(shù)據(jù)長(zhǎng)度的修改為當(dāng)前數(shù)據(jù)的長(zhǎng)度 // Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI) //halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //讀出CRC校驗(yàn)位 halSpiStrobe(CCxxx0_SFRX); //清洗接收緩沖區(qū) // delay(2); // halSpiStrobe(CCxxx0_SRX); //進(jìn)入接收狀態(tài) // delay(20); //delay(200); return 1; //return (status[1] & CRC_OK); //如果校驗(yàn)成功返回接收成功 } else { *length = packetLength; halSpiStrobe(CCxxx0_SFRX); //清洗接收緩沖區(qū) // delay(2); // halSpiStrobe(CCxxx0_SRX); //進(jìn)入接收狀態(tài) // delay(20); // LED2 = 1; return 0; } } return 0; } void main(void) { unsigned char key1_flag = 0; bit key2_flag = 0; unsigned int key1_scan_cnt = 400; unsigned int key2_scan_cnt = 300; INT8U i = 0; INT8U leng =0; INT8U tf =0; INT8U TxBuf[8]={1,2,3,4,5,6,7,8}; // 8字節(jié), 如果需要更長(zhǎng)的數(shù)據(jù)包,請(qǐng)正確設(shè)置 INT8U RxBuf[8]={0}; CpuInit(); POWER_UP_RESET_CC1100(); halRfWriteRfSettings(); halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8); //halSpiStrobe(CCxxx0_SRX); //進(jìn)入接收狀態(tài) //setRxMode(); while(1) { //setRxMode(); delay(10); if(KEY1 == 0) { key1_scan_cnt--; if(!key1_scan_cnt) { key1_scan_cnt = 300; if(key1_flag == 0)//判斷按鍵是否第1次按下 { key1_flag = 1;//按鍵第1次按下標(biāo)志位 } } } else { key1_scan_cnt = 300; if(key1_flag == 1)//判斷是否第一次按鍵動(dòng)作松開(kāi) { led1 = 0; led0 = 0; key1_flag = 2; key1_scan_cnt = 3; TxBuf[0] = 0x77;//第1個(gè)字節(jié)為0x77的數(shù)據(jù)幀,接收方收到后不需要返回應(yīng)答 while(1) { halRfSendPacket(TxBuf,8); // Transmit Tx buffer data delay(100); if(KEY1 == 0)//檢測(cè)按鍵是否第2次按下 { key1_scan_cnt--; if(!key1_scan_cnt) { key1_flag = 3;//按鍵第2次按下 key1_scan_cnt = 300; led1 = 1; led0 = 1; break;//當(dāng)按鍵再次按下時(shí)退出長(zhǎng)發(fā)狀態(tài) } } else//沒(méi)有第2次的按鍵動(dòng)作 { key1_scan_cnt = 3; } } } else if(key1_flag == 3)//是否為第2次的按鍵動(dòng)作松開(kāi) { key1_flag = 0; } } if(KEY2 == 0) { key2_scan_cnt--; if(!key2_scan_cnt)//確認(rèn)按鍵正常按下 { key2_scan_cnt = 300; key2_flag = 1;//按鍵第1次按下標(biāo)志位 } } else { key2_scan_cnt = 300; if(key2_flag)//按鍵彈起 { LED1 = 0; key2_flag = 0; delay(1000); TxBuf[0] = 0x88; halRfSendPacket(TxBuf,8);// Transmit Tx buffer data LED1 = 1; } } leng =8; // 預(yù)計(jì)接受8 bytes if(halRfReceivePacket(RxBuf,&leng)) // if(!GDO0) { // leng =8; // 預(yù)計(jì)接受8 bytes // if(halRfReceivePacket(RxBuf,&leng)) { if(RxBuf[0] == 0x77)//接收到的數(shù)據(jù)不需要返回應(yīng)答 { LED2 = ~LED2; } else if(RxBuf[0] == 0x88)//判斷接收到的數(shù)據(jù)是否需要返回應(yīng)答 { LED2 = 0;//接收數(shù)據(jù)正確,開(kāi)接收指示燈 LED1 = 0;//準(zhǔn)備發(fā)送應(yīng)答,開(kāi)發(fā)送指示燈 delay(1000); TxBuf[0] = 0x99; halRfSendPacket(TxBuf,8); // Transmit Tx buffer data 返回應(yīng)答 LED2 = 1; LED1 = 1; } else if(RxBuf[0] == 0x99)//應(yīng)答數(shù)據(jù) { LED2 = 0; delay(1000); LED2 = 1; } } } } }