目前較為常用的串口有9針串口(DB9)和25針串口(DB25),通信距離較近時(<12m),可以用電纜線直接連接標準RS232端口(RS422,RS485較遠),若距離較遠,需附加調制解調器(MODEM)。最為簡單且常用的是三線制接法,即地、接收數據和發送數據三腳相連,本文只涉及到最為基本的接法,且直接用RS232相連。 1.DB9和DB25的常用信號腳說明
9針串口(DB9) |
25針串口(DB25) |
||||
針號 |
功能說明 |
縮寫 |
針號 |
功能說明 |
縮寫 |
1 |
數據載波檢測 |
DCD |
8 |
數據載波檢測 |
DCD |
2 |
接收數據 |
RXD |
3 |
接收數據 |
RXD |
3 |
發送數據 |
TXD |
2 |
發送數據 |
TXD |
4 |
數據終端準備 |
DTR |
20 |
數據終端準備 |
DTR |
5 |
信號地 |
GND |
7 |
信號地 |
GND |
6 |
數據設備準備好 |
DSR |
6 |
數據準備好 |
DSR |
7 |
請求發送 |
RTS |
4 |
請求發送 |
RTS |
8 |
清除發送 |
CTS |
5 |
清除發送 |
CTS |
9 |
振鈴指示 |
DELL |
22 |
振鈴指示 |
DELL |
2.RS232C串口通信接線方法(三線制)
首先,串口傳輸數據只要有接收數據針腳和發送針腳就能實現:同一個串口的接收腳和發送腳直接用線相連,兩個串口相連或一個串口和多個串口相連
· 同一個串口的接收腳和發送腳直接用線相連 對9針串口和25針串口,均是2與3直接相連;
兩個不同串口(不論是同一臺計算機的兩個串口或分別是不同計算機的串口)
9針-9針
|
25針-25針
|
9針-25針
|
|||
2
|
3
|
3
|
2
|
2
|
2
|
3
|
2
|
2
|
3
|
3
|
3
|
5
|
5
|
7
|
7
|
5
|
7
|
上面表格是對微機標準串行口而言的,還有許多非標準設備,如接收GPS數據或電子羅盤數據,只要記住一個原則:接收數據針腳(或線)與發送數據針腳(或線)相連,彼此交叉,信號地對應相接,就能百戰百勝。
3.串口調試中要注意的幾點:
串口調試時,準備一個好用的調試工具,如串口調試助手、串口精靈等,有事半功倍之效果;
強烈建議不要帶電插撥串口,插撥時至少有一端是斷電的,否則串口易損壞。
單工、半雙工和全雙工的定義
如果在通信過程的任意時刻,信息只能由一方A傳到另一方B,則稱為單工。
如果在任意時刻,信息既可由A傳到B,又能由B傳A,但只能由一個方向上的傳輸存在,稱為半雙工傳輸。
如果在任意時刻,線路上存在A到B和B到A的雙向信號傳輸,則稱為全雙工。
電話線就是二線全雙工信道。 由于采用了回波抵消技術,雙向的傳輸信號不致混淆不清。雙工信道有時也將收、發信道分開,采用分離的線路或頻帶傳輸相反方向的信號,如回線傳輸。
-------->
|
<-------->
|
-------->
|
A---------B
|
A---------B
|
A---------B
|
|
|
<--------
|
單工
|
半雙工
|
全雙工
|
串行數據在傳輸過程中,由于干擾可能引起信息的出錯,例如,傳輸字符‘E’,其各位為:
0100,0101=45H
D7 D0
由于干擾,可能使位變為1,這種情況,我們稱為出現了“誤碼”。我們把如何發現傳輸中的錯誤,叫“檢錯”。發現錯誤后,如何消除錯誤,叫“糾錯”。
最簡單的檢錯方法是“奇偶校驗”,即在傳送字符的各位之外,再傳送1位奇/偶校驗位?刹捎闷嫘r灮蚺夹r。
奇校驗:所有傳送的數位(含字符的各數位和校驗位)中,“1”的個數為奇數,如:
1 0110,0101
0 0110,0001
偶校驗:所有傳送的數位(含字符的各數位和校驗位)中,“1”的個數為偶數,如:
1 0100,0101
有些檢錯方法,具有自動糾錯能力。如循環冗余碼(CRC)檢錯等。
串口通訊流控制
我們在串行通訊處理中,常常看到RTS/CTS和XON/XOFF這兩個選項,這就是兩個流控制的選項,目前流控制主要應用于調制解調器的數據通訊中,但對普通RS232編程,了解一點這方面的知識是有好處的。那么,流控制在串行通訊中有何作用,在編制串行通訊程序怎樣應用呢?這里我們就來談談這個問題。
1.流控制在串行通訊中的作用
這里講到的“流”,當然指的是數據流。數據在兩個串口之間傳輸時,常常會出現丟失數據的現象,或者兩臺計算機的處理速度不同,如臺式機與單片機之間的通訊,接收端數據緩沖區已滿,則此時繼續發送來的數據就會丟失,F在我們在網絡上通過MODEM進行數據傳輸,這個問題就尤為突出。流控制能解決這個問題,當接收端數據處理不過來時,就發出“不再接收”的信號,發送端就停止發送,直到收到“可以繼續發送”的信號再發送數據。因此流控制可以控制數據傳輸的進程,防止數據的丟失。 PC機中常用的兩種流控制是硬件流控制(包括RTS/CTS、DTR/CTS等)和軟件流控制XON/XOFF(繼續/停止),下面分別說明。
2.硬件流控制
硬件流控制常用的有RTS/CTS流控制和DTR/DSR(數據終端就緒/數據設置就緒)流控制。
硬件流控制必須將相應的電纜線連上,用RTS/CTS(請求發送/清除發送)流控制時,應將通訊兩端的RTS、CTS線對應相連,數據終端設備(如計算機)使用RTS來起始調制解調器或其它數據通訊設備的數據流,而數據通訊設備(如調制解調器)則用CTS來起動和暫停來自計算機的數據流。這種硬件握手方式的過程為:我們在編程時根據接收端緩沖區大小設置一個高位標志(可為緩沖區大小的75%)和一個低位標志(可為緩沖區大小的25%),當緩沖區內數據量達到高位時,我們在接收端將CTS線置低電平(送邏輯0),當發送端的程序檢測到CTS為低后,就停止發送數據,直到接收端緩沖區的數據量低于低位而將CTS 置高電平。RTS則用來標明接收設備有沒有準備好接收數據。
常用的流控制還有還有DTR/DSR(數據終端就緒/數據設置就緒)。我們在此不再詳述。由于流控制的多樣性,我個人認為,當軟件里用了流控制時,應做詳細的說明,如何接線,如何應用。
3.軟件流控制
由于電纜線的限制,我們在普通的控制通訊中一般不用硬件流控制,而用軟件流控制。一般通過XON/XOFF來實現軟件流控制。常用方法是:當接收端的輸入緩沖區內數據量超過設定的高位時,就向數據發送端發出XOFF字符(十進制的19或 Control-S,設備編程說明書應該有詳細闡述),發送端收到XOFF字符后就立即停止發送數據;當接收端的輸入緩沖區內數據量低于設定的低位時,就向數據發送端發出XON字符(十進制的17或Control-Q),發送端收到XON字符后就立即開始發送數據。一般可以從設備配套源程序中找到發送的是什么字符。
應該注意,若傳輸的是二進制數據,標志字符也有可能在數據流中出現而引起誤操作,這是軟件流控制的缺陷,而硬件流控制不會有這個問題。