相信很多朋友都可能接觸到一個波型發生器的制作,可能剛剛入門,做的東西也不會說是很復雜。可能就一個矩形波,或者是三角波。但是網上的很多資料是忽悠人的,就此,我也提供一個比較完整的波型發生器 C51 原代:
該系統的軟件比較典型:包括鍵盤的應用,顯示的應用和 DA 轉換器的應用。本設計中,輸出的波形有三種:正弦波,方波,三角波。
方波的輸出最為簡單,只要按照設定的周期值將輸出的電壓改變即可。
三角波的輸出也比較簡單,單片機的輸出只要完成數字量遞增和遞減交替進行即可。、
正弦波的輸出最麻煩,如果在軟件中計算出輸出的各點電壓值,將會浪費很多的 CPU 時間,以至于無法滿足頻率的要求。通常最簡單的方法是通過手動的方法計算出輸出各點的電壓值,然后在編寫程序時以數組的方式給出。當需要時,只要按照順序進行輸出即可。這種方法比運算法速度快且曲線的形狀修改靈活。在本設計中將 360 度分為 256 個點,則每兩個點之間的間隔為 1.4 度,然后計算出每個點電壓對應的數字量即可。只要反復輸出這組數據到 DAC0832, 就可以在系統輸出端得到想要的正弦波。
具體程序如下:
#include <reg52.h> #define uchar unsigned char #define uint unsigned int #define DAdata P0 uchar code Sinetab[256]= { 0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e, 0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e, 0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xab,0xad, 0xaf,0xb1,0xb2,0xb4,0xb6,0xb7,0xb9,0xba, 0xbc,0xbd,0xbf,0xc0,0xc1,0xc3,0xc4,0xc5, 0xc6,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce, 0xce,0xcf,0xd0,0xd1,0xd1,0xd2,0xd2,0xd3, 0xd3,0xd3,0xd2,0xd2,0xd1,0xd1,0xd0,0xcf, 0xce,0xce,0xcd,0xcc,0xcb,0xca,0xc9,0xc8, 0xc6,0xc5,0xc4,0xc3,0xc1,0xc0,0xbf,0xbd, 0xbc,0xba,0xb9,0xb7,0xb6,0xb4,0xb2,0xb1, 0xaf,0xad,0xab,0xaa,0xa8,0xa6,0xa4,0xa2, 0xa0,0x9e,0x9c,0x9a,0x98,0x96,0x94,0x92, 0x90,0x8e,0x8c,0x8a,0x88,0x86,0x84,0x82, 0x80,0x7d,0x7b,0x79,0x77,0x75,0x73,0x71, 0x6f,0x6d,0x6b,0x69,0x67,0x65,0x63,0x61, 0x5f,0x5d,0x5b,0x59,0x57,0x55,0x54,0x52, 0x50,0x4e,0x4d,0x4b,0x49,0x48,0x46,0x45, 0x43,0x42,0x40,0x3f,0x3e,0x3c,0x3b,0x3a, 0x39,0x37,0x36,0x35,0x34,0x33,0x32,0x31, 0x31,0x30,0x2f,0x2e,0x2e,0x2d,0x2d,0x2c, 0x2c,0x2b,0x2b,0x2b,0x2b,0x2a,0x2a,0x2a, 0x2a,0x2a,0x2a,0x2a,0x2b,0x2b,0x2b,0x2b, 0x2c,0x2c,0x2d,0x2d,0x2e,0x2e,0x2f,0x30, 0x31,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x39,0x3a,0x3b,0x3c,0x3e,0x3f,0x40,0x42, 0x43,0x45,0x46,0x48,0x49,0x4b,0x4d,0x4e, 0x50,0x52,0x54,0x55,0x57,0x59,0x5b,0x5d, 0x5f,0x61,0x63,0x65,0x67,0x69,0x6b,0x6d, 0x6f,0x71,0x73,0x75,0x77,0x79,0x7b,0x7d, }; uchar code Triangletab[58]= { 0x1a,0x21,0x28,0x2f,0x36,0x3d,0x44,0x4b, 0x52,0x59,0x60,0x67,0x6e,0x75,0x7c,0x83, 0x8a,0x91,0x98,0x9f,0xa6,0xad,0xb4,0xbb, 0xc2,0xc9,0xd0,0xd7,0xde,0xe5, 0xde,0xd7,0xd0,0xc9,0xc2,0xbb,0xb4,0xad, 0xa6,0x9f,0x98,0x91,0x8a,0x83,0x7c,0x75, 0x6e,0x67,0x60,0x59,0x52,0x4b,0x44,0x3d, 0x36,0x2f,0x28,0x21, }; uchar code Squaretab[2]={0x56,0xaa}; uchar code disp1[]= { "Sine Wave " "Triangle Wale " "Square Wave " }; uchar idata disp2[16]={"Frequency: Hz"}; uchar code Coef[3]={10,100,200}; uchar idata WaveFre[3]={1,1,1}; uchar code WaveTH[]= { 0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, }; uchar code WaveTL[]= { 0xf2,0x78,0xfb,0x3c,0x63,0x7d,0x8f,0x9d,0xa8,0xb1, 0x17,0x0b,0xb2,0x05,0x37,0x58,0x70,0x82,0x90,0x9b, 0x4d,0xa7,0xc4,0xd3,0xdc,0xe2,0xe6,0xea,0xec,0xee }; uchar Wavecount,THtemp,TLtemp; uchar Waveform; sbit rs=P2^5; sbit rw=P2^6; sbit e=P2^7; sbit DA=P2^0; sbit KEY=P3^2; void delay(uchar i) { uchar j; for(;i>0;i--) for(j=20;j>0;j--); } void busy() { uchar temp; temp=0x00; rs=0; rw=1; while((temp&0x80)==0x80) { P0=0xff; e=1; temp=P0; e=0; } } void WR_Com(uchar temp) { busy(); rs=0; rw=0; P0=temp; e=1; e=0; } void WR_Data(uchar num) { busy(); rs=1; rw=0; P0=num; e=1; e=0; } void disp_lcd(uchar addr,uchar *temp1) { uchar i; WR_Com(addr); delay(100); for(i=0;i<16;i++) { WR_Data(temp1[i]); delay(100); } } void lcd_ini() { char i; for(i=3;i>0;i--) { P0=0x30; rs=0; rw=0; e=1; e=0; delay(100); } P0=0x38; rs=0; rw=0; e=1; e=0; delay(100); } void lcd_Reset() { WR_Com(0x01); delay(100); WR_Com(0x06); delay(100); WR_Com(0x0c); delay(100); } void SineOUT(uchar Wavecount) { DAdata=Sinetab[Wavecount++]; Wavecount=0; DA=0; DA=1; } void TriangleOUT(uchar Wavecount) { DAdata=Triangletab[Wavecount++]; if(Wavecount>57) Wavecount=0; DA=0; DA=1; } void SquareOUT(uchar Wavecount) { DAdata=Squaretab[Wavecount++]; if(Wavecount>1) Wavecount=0; DA=0; DA=1; } void timer() interrupt 1 { TH0=THtemp; TL0=THtemp; if(Waveform==0) SineOUT(Wavecount); else if(Waveform==1) TriangleOUT(Wavecount); else if(Waveform==2) SquareOUT(Wavecount); } void key_int() interrupt 0 { uchar keytemp,keytemp1; uint WaveCoef; EA=0; TR0=0; keytemp1=0; delay(10); while(!KEY); keytemp=~P2&0x1e; keytemp>>=1; while(keytemp!=8) { keytemp=~P2&0x1e; keytemp>>=1; if(keytemp!=keytemp1) { keytemp1=keytemp; switch(keytemp) { case 1: if(++Waveform==3) Waveform=0; break; case 2: if(++WaveFre[Waveform]==11) WaveFre[Waveform]=1; break; case 4: if(--WaveFre[Waveform]==0) WaveFre[Waveform]=10; break; } THtemp=WaveTH[Waveform*16+(WaveFre[Waveform]-1)]; TLtemp=WaveTL[Waveform*16+(WaveFre[Waveform]-1)]; WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30; WaveCoef/=10; disp2[12]=WaveCoef%10+0x30; WaveCoef/=10; disp2[11]=WaveCoef%10+0x30; WaveCoef/=10; disp2[10]=WaveCoef%10+0x30; WaveCoef/=10; disp_lcd(0x80,&disp1[Waveform*16]); disp_lcd(0xc0,disp2); } } TH0=THtemp; TL0=THtemp; Wavecount=0; TR0=1; } void main() { uint WaveCoef; uchar i; lcd_ini(); lcd_Reset(); WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30; WaveCoef/=10; disp2[12]=WaveCoef%10+0x30; WaveCoef/=10; disp2[11]=WaveCoef%10+0x30; WaveCoef/=10; disp2[10]=WaveCoef%10+0x30; WaveCoef/=10; disp_lcd(0x80,&disp1[Waveform*16]); disp_lcd(0xc0,disp2); i=0; DAdata=0x00; DA=0; TMOD=0x01; IT0=1; ET0=1; EX0=1; EA=1; while(1); }