久久久久久久999_99精品久久精品一区二区爱城_成人欧美一区二区三区在线播放_国产精品日本一区二区不卡视频_国产午夜视频_欧美精品在线观看免费

 找回密碼
 立即注冊

QQ登錄

只需一步,快速開始

搜索
查看: 2514|回復: 0
打印 上一主題 下一主題
收起左側

PID算法

[復制鏈接]
跳轉到指定樓層
樓主
ID:138551 發表于 2016-9-6 00:10 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式
     在工程實際中,應用最為廣泛的調節器控制規律為比例、積分、微分控制,簡稱PID控制,又稱PID調節。
   PID控制器問世至今已有近70年歷史,它以其結構簡單、穩定性好、工作可靠、調整方便而成為工業控制的主要技術之一。當被控對象的結構和參數不能完全掌握,或得不到精確的數學模型時,控制理論的其它技術難以采用時,系統控制器的結構和參數必須依靠經驗和現場調試來確定,這時應用PID控制技術最為方便。即當我們不完全了解一個系統和被控對象﹐或不能通過有效的測量手段來獲得系統參數時,最適合用PID控制技術。PID控制,實際中也有PI和PD控制。PID控制器就是根據系統的誤差,利用比例、積分、微分計算出控制量進行控制的。
  
比例(P)控制
比例控制是一種最簡單的控制方式。其控制器的輸出與輸入誤差信號成比例關系。當僅有比例控制時系統輸出存在穩態誤差(Steady-state error)。
  
積分(I)控制
在積分控制中,控制器的輸出與輸入誤差信號的積分成正比關系。對一個自動控制系統,如果在進入穩態后存在穩態誤差,則稱這個控制系統是有穩態誤差的或簡稱有差系統(System with Steady-stateError)。為了消除穩態誤差,在控制器中必須引入“積分項”。積分項對誤差取決于時間的積分,隨著時間的增加,積分項會增大。這樣,即便誤差很小,積分項也會隨著時間的增加而加大,它推動控制器的輸出增大使穩態誤差進一步減小,直到等于零。因此,比例+積分(PI)控制器,可以使系統在進入穩態后無穩態誤差
  
微分(D)控制
在微分控制中,控制器的輸出與輸入誤差信號的微分(即誤差的變化率)成正比關系。 自動控制系統在克服誤差的調節過程中可能會 出現振蕩甚至失穩。其原因是由于存在有較大慣性組件(環節)或有滯后(delay)組件,具有抑制誤差的作用,其變化總是落后于誤差的變化。解決的辦法是使抑制誤差的作用的變化“超前”,即在誤差接近零時,抑制誤差的作用就應該是零。這就是說,在控制器中僅引入“比例”項往往是不夠的,比例項的作用僅是放大誤差的幅值,而目前需要增加的是“微分項”,它能預測誤差變化的趨勢,這樣,具有比例+微分的控制器,就能夠提前使抑制誤差的控制作用等于零,甚至為負值,從而避免了被控量的嚴重超調。所以對有較大慣性或滯后的被控對象,比例+微分(PD)控制器能改善系
統在調節過程中的動態特性。

1.比例調節依據"偏差的大小"來動作,它的輸出與輸入偏差的大小成比例.比例調節及時,有力,但有余差.它用比例度來表示其作用的強弱,比例度越小,調節作用越強,相反,比例度越大,調節作用就越弱;比例作用太強時,會引起震蕩.
2.積分調節依據"偏差是否存在"來動作,它的輸出與偏差對時間的積分成比例,只有當余差消失時,積分作用才會停止,其作用是消除余差.但積分作用使最大動偏差增大,延長了調節時間.它用積分時間T來表示其作用的強弱,T越小,積分作用越強,但積分作用太強時,也會引起震蕩.
3.微分調節依據"偏差變化的速度"來動作.它的輸出與輸入偏差變化的速度成比例,其效果是阻止被調參數的一切變化,有超前調節的作用,對滯后大的對象(溫度)有很好的效果.它使調節過程偏差減小,時間縮短,余差也減小(但不能消除).它用微分時間TdL來表示其作用的強弱,Td大,作用強,但Td太大,也會引起振蕩.

PID控制器的參數整定
PID控制器的參數整定是控制系統設計的核心內容。它是根據被 控過程的特性確定PID控制器的比例系數、積分時間和微分時間的大小。PID控制器參數整定的方法很多,概括起來有兩大類:一是理論計算整定法。它主要是 依據系統的數學模型,經過理論計算確定控制器參數。這種方法所得到的計算數據未必可以直接用,還必須通過工程實際進行調整和修改。二是工程整定方法,它主 要依賴工程經驗,直接在控制系統的試驗中進行,且方法簡單、易于掌握,在工程實際中被廣泛采用。PID控制器參數的工程整定方法,主要有臨界比例法、反應 曲線法和衰減法。三種方法各有其特點,其共同點都是通過試驗,然后按照工程經驗公式對控制器參數進行整定。但無論采用哪一種方法所得到的控制器參數,都需 要在實際運行中進行最后調整與完善。現在一般采用的是臨界比例法。利用該方法進行 PID控制器參數的整定步驟如下:
(1)首先預選擇一個足夠短的采樣周期讓系統工作;(2)僅加入比例控制環節,直到系統對輸入的階躍響應出現臨界振蕩, 記下這時的比例放大系數和臨界振蕩周期;(3)在一定的控制度下通過公式計算得到
PID控制器的參數。
在實際調試中,只能先大致設定一個經驗值,然后根據調節效果修改。
對于溫度系統:P(%)20--60,I(分)3--10,D(分)0.5--3
對于流量系統:P(%)40--100,I(分)0.1--1
對于壓力系統:P(%)30--70,I(分)0.4--3
對于液位系統:P(%)20--80,I(分)1--5
參數整定找最佳,從小到大順序查
先是比例后積分,最后再把微分加
曲線振蕩很頻繁,比例度盤要放大
曲線漂浮繞大灣,比例度盤往小扳
曲線偏離回復慢,積分時間往下降
曲線波動周期長,積分時間再加長
曲線振蕩頻率快,先把微分降下來
動差大來波動慢。微分時間應加長
理想曲線兩個波,前高后低4比1
一看二調多分析,調節質量不會低

經驗告訴我們,根據具體的龍頭和水壓,溫度高1度,熱水需要關小一定的量,比如說,關小一格。換句
話說,控制量和控制偏差成比例關系,這就是經典的比例控制規律:控制量=比例控制增益* 控制偏差,偏差越大,控制量越大。控制偏差就是實際測量值和設定值或目標值之差。在比例控制規律下,偏差反向,控制量也反向。也就是說,如果淋浴水溫要求為40度,實際水溫高于40度時,熱水龍頭向關閉的方向變化;實際水溫低于40度時,熱水龍頭向開啟的方向變化。但是比例控制規律并不能 保證水溫能夠精確達到 40度。在實際生活中,人們這時對熱水龍頭作微調,只要水溫還不合適,就一點一點地調節,直到水溫合適為止。這種只要控制偏差不消失就漸進微調的控制規律,在控制里叫積分控制規律,因為控制量和控制偏差在時間上的累積成正比,其比例因子就稱為積分控制增益。工業上常用積分控制增益的倒數,稱其為積分時間常數,其物理意義是偏差恒定時,控制量加倍所需的時間。這里要注意的是,控制偏差有正有負,全看實際測量值是大于還是小于設定值,所以只要控制系統是穩定的,也就是實際測量值最終會穩定在設定值上,控制偏差的累積不會是無窮大的。這里再啰嗦一遍,積分控制的基本作用是消除控制偏差的余差(也叫殘差)

PID 控制中,
積分控制的特點是:只要還有余差(即殘余的控制偏差)存在,積分控制就按部就班地逐漸增加控制作用,直到余差消失。所以積分的效果比較緩慢,除特殊情況外,作為基本控制作用,緩不救急。
微分控制的特點是:盡管實際測量值還比設定值低,但其快速上揚的沖勢需要及早加以抑制,否則,等到實際值超過設定值再作反應就晚了,這就是微分控制施展身手的地方了。作為基本控制使用,微分控制只看趨勢,不看具體數值所在,所以最理想的情況也就是把實際值穩定下來,但穩定在什么地方就要看你的運氣了,所以微分控制也不能作為基本控制作用。比例控制沒有這些問題,比例控制的反應快,穩定性好,是最基本的控制作用,是 “皮”,積分、微分控制是對比例控制起增強作用的,極少單獨使用,所以是“毛”。在實際使用中比例和積分一般一起使用,比例承擔主要的控制作用,積分幫助消除余差。微分只有在被控對象反應遲緩,需要在開始有所反應時,及早補償,才予以采用。只用比例和微分的情況
很少見。
連續控制的精度是開關控制所不可比擬的,但連續控制的高精度也是有代價的,這就是穩定性問題。控制
增益決定了控制作用對偏差的靈敏度。既然增益決定了控制的靈敏度,那么越靈敏豈不越好?非也。實際中到底多少增益才是最合適的,理論上有很多計算方法,但實用中一般是靠經驗和調試來摸索最佳增益,業內行話叫參數整定。如果系統響應在控制作用后面拖拖沓沓,大幅度振蕩的話,那一般是積分太過;如果系統響應非常神經質,動不動就打擺子,呈現高頻小幅度振蕩的話,那一般是微分有點過分。中頻振蕩當然就是比例的問題了。不過各個系統的頻率都是不一樣的,到底什么算高頻,什么算低頻,
再具體說起來,參數整定有兩個路子。
一是首先調試比例增益以保證基本的穩定性,然后加必要的積分以消除余差,只有在最必要的情況下,比如反映遲緩的溫度過程或容量極大的液位過程,測量噪聲很低,才加一點微分。這是“學院派”的路子,在大部分情況下很有效。但是工業界有一個“歪路子”:用非常小
的比例作用,但大大強化積分作用。這個方法是完全違背控制理論的分析的,但在實際中卻是行之有效,原因在于測量噪聲嚴重,或系統反應過敏時,積分為主的控制規律動作比較緩和,不易激勵出不穩定的因素,尤其是不確定性比較高的高頻部分
在很多情況下,在初始PID參數整定之后,只要系統沒有出現不穩定或性能顯著退化,一般不會去重新整定。但是要是系統不穩定了怎么辦呢?由于大部分實際系統都是開環穩定的,也就是說,只要控制作用恒定不變,系統響應最終應該穩定在一個數值,盡管可能不是設定值,所以對付不穩定的第一個動作都是把比例增益減小,根據實際情況,減小1/3、1/2甚至更多,同時加大積分時間常數,常常成倍地加,再就是減小甚至取消微分控制作用。如果有前饋控制,適當減小前饋增益也是有用的。在實際中,系統性能不會莫名其妙地突然變壞,上述“救火”式重新整定常常是臨時性的,等生產過程中的機械或原料問題消除后
,參數還是要設回原來的數值,否則系統性能會太過“懶散”。
對于新工廠,系統還沒有投運,沒法根據實際響應來整定,一般先估計一個初始參數,在系統投運的過程中,對控制回路逐個整定。我自己的經驗是,對于一般的流量回路,比例定在 0.5左右,積分大約1分鐘,微分為0,這個組合一般不致于一上來就出大問題。溫度回路可以從2、5、0.05開始,液位回路從5、10、0開始,氣相壓力回路從10、20、0開始。既然這些都是憑經驗的估計,那當然要具體情況具體分析,

比例控制的特點是:偏差大,控制作用就大。但在實際中有時還嫌不夠,最好偏差大的時候,比例增益也大,進一步加強對大偏差的矯正作用,及早把系統拉回到設定值附近;偏差小的時候,當然就不用那么急吼吼,慢慢來就行,所以增益小一點,加強穩定性。這就是雙增益PID(也叫雙模式PID)的起源。想想也對,高射炮瞄準敵機是一個控制問題。如果炮管還指向離目標很遠的角度,那應該先盡快地把炮管轉到目標角度附近,動作猛一點才好;但炮管指向已經目標很近了,就要再慢慢地精細瞄準。工業上也有很多類似的問題。雙增益PID的一個特例是死區PID(PID with dead band),小偏差時的增益為零,也就是說,測量值和設定值相差不大的時候,就隨他去,不用控制。這在大型緩沖容器的液位控制里用得很多。本來緩沖容器就是緩沖流量變化的,液位到底控制在什么地方并不緊要,只要不是太高或太低就行。但是,從緩沖容器流向下游裝置的流量要盡可能穩定,否則下游裝置會受到不必要的擾動。死區PID對這樣的控制問題是最合適的。但是天下沒有免費的午餐。死區PID的前提是液位在一般情況下會“自動”穩定在死區內,如果死區設置不當,或系統經常受到大幅度的擾動,死區內的“無控”狀態會導致液位不受限制地向死區邊界“挺進”,最后進入“受控”區時,控制作用過火,液位向相反方向不受限制地“挺進”,最后的結果是液位永遠在死區的兩端振蕩,而永遠不會穩定下來,雙增益PID也有同樣的問題,只是比死區PID好一些,畢竟只有“強控制”和“弱控制”的差別,而沒有“無控區”。在實用中,雙增益的內外增益差別小于2:1沒有多大意義,大于 5:1就要注意上述的持續振蕩或hunting的問題。雙增益或死區PID的問題在于增益的變化是不連續的,控制作用在死區邊界上有一個突然的變化,容易誘發系統的不利響應,平方誤差PID就沒有這個問題。誤差一經平方,控制量對誤差的曲線就成了拋物線,同樣達到“小偏差小增益、大偏差大增益”的效果,還沒有和突然的不連續的增益變化。但是誤差平方有兩個問題:一是誤差接近于零的時候,增益也接近于零,回到上面死區PID的問題;二是很難控制拋物線的具體形狀,或者說,很難制定增益在什么地方拐彎。對于第一個問題,可以在誤差平方PID上加一個基本的線性PID,是零誤差是增益不為零;對于后一個問題,就要用另外的模塊計算一個連續變化的增益了
。具體細節比較瑣碎,將偏差送入一個分段線性化(也就是折線啦)的計算單元,然后將計算結果作為比例增益輸出到PID控制器,折線的水平段就對應予不同的增益,而連接不同的水平段的斜線就對應于增益的連續變化。通過設置水平段和斜線段的折點,可以任意調整變增益的曲線。要是“野心”大一點,再加幾個計算單元,可以做出不對稱的增益,也就是升溫時增益低一點,降溫時增益高一點,以處理加熱過程中常見的升溫快、降溫慢的問題。
雙增益或誤差平方都是在比例增益上作文章,同樣的勾當也可以用在積分和微分上。
  更極端的一種PID規律叫積分分離 PID,其思路是這樣的:比例控制的穩定性好,響應快,所以偏差大的時候,把PID中的積分關閉掉;偏差小的時候,精細調整、消除余差是主要問題,所以減弱甚至關閉比例作用,而積分作用切入控制。概念是好的,但具體實施的時候,有很多無擾動切換的問題。這些變態的PID在理論上很難分析系統的穩定性,但在實用中解決了很多困難的問題。大言不慚一句,這些PID本人在實際中都用過。


評分

參與人數 1黑幣 +50 收起 理由
admin + 50 共享資料的黑幣獎勵!

查看全部評分

分享到:  QQ好友和群QQ好友和群 QQ空間QQ空間 騰訊微博騰訊微博 騰訊朋友騰訊朋友
收藏收藏4 分享淘帖 頂 踩
回復

使用道具 舉報

您需要登錄后才可以回帖 登錄 | 立即注冊

本版積分規則

手機版|小黑屋|51黑電子論壇 |51黑電子論壇6群 QQ 管理員QQ:125739409;技術交流QQ群281945664

Powered by 單片機教程網

快速回復 返回頂部 返回列表
主站蜘蛛池模板: 日韩国产一区二区三区 | 成人免费观看网站 | 国产精品一区一区 | 久热精品在线观看视频 | 欧美精品一区三区 | 在线看av网址 | 国产99视频精品免费播放照片 | 欧美精品一区二区蜜桃 | 在线亚州| 国产一区二区精品在线 | 国产97碰免费视频 | 成人免费影院 | 日韩一级 | 成人免费视频网站在线观看 | 国产在线播放av | 一区二区三区国产好 | 亚洲欧美自拍偷拍视频 | 亚洲精品视频在线看 | h视频免费在线观看 | 国产精品99免费视频 | 久久久久国产一区二区三区四区 | 天天干天天玩天天操 | 欧美精品网站 | 性欧美精品一区二区三区在线播放 | 成人av高清在线观看 | 国产在线麻豆精品入口 | 亚洲高清电影 | 久久久久久国产精品 | 国产福利视频导航 | 午夜国产 | 欧美久久久久久 | 久久91av| 麻豆久久精品 | 99re在线观看 | 午夜成人免费视频 | 玩丰满女领导对白露脸hd | 久久欧美精品 | 91精品国产91久久久久久吃药 | 在线观看不卡av | 久久久久久久久久久久久九 | 国产欧美一区二区三区免费 |