輸入捕捉模式和PWM輸入模式的區(qū)別
Stm32的通用定時器具備基本的輸入捕捉功能。所謂輸入捕捉功能,是指通用定時器可以通過檢測輸入信號的跳變沿,檢測到跳變沿的同時將計數(shù)器的當前值寫入相應(yīng)的寄存器。我們可以利用定制器的輸入捕捉模式可以測量輸入信號的高電平時間、占空比和頻率。
1、輸入捕捉模式
Stm32的通用TIM2、3、4、5 都具有輸入捕捉的功能,每個定時器具有四個通道,并且每一個通道都可以單獨配置為輸入捕捉模式,主要用于測量輸入信號的高電平時間,也可測量信號的頻率(可能不太精確,尤其對于頻率很高的信號),如果用于測量信號的高電平時間,配置時需要注意定時器的時基頻率,下面的程序中有所說明。
下面是具體的程序,配置TIM2的四個通道為基本輸入捕捉模式,定時器的時基頻率為1M,用于測量輸入信號的高電平時間。
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_TimeBaseStructure.TIM_Period =0xFFFF;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision =0;
TIM_TimeBaseStructure.TIM_CounterMode =TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2 ,&TIM_TimeBaseStructure);
TIM_PrescalerConfig(TIM2 , 71 ,TIM_PSCReloadMode_Immediate); //即Ft=72M/72=1M
TIM2->CCMR1 &=(u16)0x0000; //清零
TIM2->CCMR1 |=(u16)0x0101; //TIM輸入2與IC2相連1與IC1相連
TIM2->CCMR2 &=(u16)0x0000; //清零
TIM2->CCMR2 |=(u16)0x0101; //TIM輸入3與IC3相連 4與IC4相連
TIM2->CCER = (u16)0x1111; //上升沿捕捉 捕捉使能
//開啟 CC中斷
//使能 Time
TIM2->DIER =(u16)0x001E; //TIM_IT_CC1 TIM_IT_CC2 TIM_IT_CC3 TIM_IT_CC4
//TIM2->DIER = (u16)0x0002;
TIM2->CR1 =((u16)0x0001); //CR1_CEN_Set
u16 IC_Dat[9] = {0,0,0,0,0,0,0,0,0};
u16 CaptureNumber1 = 0,CaptureNumber2 = 0,CaptureNumber3 =0,CaptureNumber4 = 0;
vu32 Capture1 = 0,Capture2 = 0,Capture3 = 0,Capture4 = 0;
void TIM2_IRQHandler(void)
{
if(TIM_GetITStatus(TIM2, TIM_IT_CC1) == SET) //判斷CH1是否出現(xiàn)跳變沿
{
if(CaptureNumber1 ==0) //出現(xiàn)上升沿
{
IC_Dat[1] =TIM_GetCapture1(TIM2); //得到CH1捕捉值1
CaptureNumber1 = 1;
TIM2->CCER &=(u16)0xFFFD; //改變跳變沿
TIM2->CCER |= (u16)0x0002;
}
elseif(CaptureNumber1 ==1) //出現(xiàn)下降沿
{
IC_Dat[2] = TIM_GetCapture1(TIM2); //得到CH1捕捉值2
TIM2->CCER &=(u16)0xFFFD; //改變跳變沿
TIM2->CCER |= (u16)0x0000;
if (IC_Dat[2] > IC_Dat[1])
{
Capture1 = (IC_Dat[2] - IC_Dat[1]);
}
else
{
Capture1 = ((0xFFFF - IC_Dat[1]) + IC_Dat[2]);
}
CaptureNumber1 = 0;
//printf("\r\n TheIC12 of input pulse is %d \r\n" ,IC_Dat[2]);
//printf("\r\n TheIC11 of input pulse is %d \r\n" ,IC_Dat[1]);
printf("\r\n TheCapture1 of input pulse is %d \r\n" ,Capture1);
}
TIM_ClearITPendingBit(TIM2, TIM_IT_CC1);
}
else if(TIM_GetITStatus(TIM2, TIM_IT_CC2) ==SET) //判斷CH2是否出現(xiàn)跳變沿
{
if(CaptureNumber2 ==0) //出現(xiàn)上升沿
{
IC_Dat[3] =TIM_GetCapture2(TIM2); //得到CH2捕捉值1
CaptureNumber2 = 1;
TIM2->CCER &=(u16)0xFFDF; //改變跳變沿
TIM2->CCER |= (u16)0x0020;
}
elseif(CaptureNumber2 ==1) //出現(xiàn)下降沿
{
IC_Dat[4] = TIM_GetCapture2(TIM2); //得到CH2捕捉值2
TIM2->CCER &=(u16)0xFFDF; //改變跳變沿
TIM2->CCER |= (u16)0x0000;
if (IC_Dat[4] > IC_Dat[3])
{
Capture2 = (IC_Dat[4] - IC_Dat[3]);
}
else
{
Capture2 = ((0xFFFF - IC_Dat[3]) + IC_Dat[4]);
}
CaptureNumber2 = 0;
//printf("\r\n TheIC22 of input pulse is %d \r\n" ,IC_Dat[4]);
// printf("\r\n The IC21 ofinput pulse is %d \r\n" , IC_Dat[3]);
printf("\r\n TheCapture2 of input pulse is %d \r\n" ,Capture2);
}
TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
}
else if(TIM_GetITStatus(TIM2, TIM_IT_CC3) ==SET) //判斷CH3是否出現(xiàn)跳變沿
{
if(CaptureNumber3 ==0) //出現(xiàn)上升沿
{
IC_Dat[5] =TIM_GetCapture3(TIM2); //得到CH3捕捉值1
CaptureNumber3 = 1;
TIM2->CCER &=(u16)0xFDFF; //改變跳變沿
TIM2->CCER |= (u16)0x0200;
}
elseif(CaptureNumber3 ==1) //出現(xiàn)下降沿
{
IC_Dat[6] = TIM_GetCapture3(TIM2); //得到CH3捕捉值2
TIM2->CCER &=(u16)0xFDFF; //改變跳變沿
TIM2->CCER |= (u16)0x0000;
if (IC_Dat[6] > IC_Dat[5])
{
Capture3 = (IC_Dat[6] - IC_Dat[5]);
}
else
{
Capture3 = ((0xFFFF - IC_Dat[5]) + IC_Dat[6]);
}
CaptureNumber3 = 0;
//printf("\r\n TheIC32 of input pulse is %d \r\n" ,IC_Dat[6]);
//printf("\r\n TheIC31 of input pulse is %d \r\n" ,IC_Dat[5]);
printf("\r\n TheCapture3 of input pulse is %d \r\n" ,Capture3);
}
TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
}
else if(TIM_GetITStatus(TIM2, TIM_IT_CC4) ==SET) //判斷CH3是否出現(xiàn)跳變沿
{
if(CaptureNumber4 ==0) //出現(xiàn)上升沿
{
IC_Dat[7] =TIM_GetCapture4(TIM2); //得到CH3捕捉值1
CaptureNumber4 = 1;
TIM2->CCER &=(u16)0xDFFF; //改變跳變沿
TIM2->CCER |= (u16)0x2000;
}
elseif(CaptureNumber4 ==1) //出現(xiàn)下降沿
{
IC_Dat[8] = TIM_GetCapture4(TIM2); //得到CH3捕捉值2
TIM2->CCER &=(u16)0xDFFF; //改變跳變沿
TIM2->CCER |= (u16)0x0000;
if (IC_Dat[8] > IC_Dat[7])
{
Capture4 = (IC_Dat[8] - IC_Dat[7]);
}
else
{
Capture4 = ((0xFFFF - IC_Dat[7]) + IC_Dat[8]);
}
CaptureNumber4 = 0;
// printf("\r\n The IC42 ofinput pulse is %d \r\n" , IC_Dat[8]);
// printf("\r\n The IC41 ofinput pulse is %d \r\n" , IC_Dat[6]);
printf("\r\n TheCapture4 of input pulse is %d \r\n" ,Capture4);
}
TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);
}
}
需要注意的問題:
定時器的時基頻率不能太高,如果定時器工作于36M,采集50Hz的信號就會出現(xiàn)偏差(實測),所以程序中將定時器的時基頻率配置為了1M;
如果存在兩個以上中斷,需要設(shè)置中斷優(yōu)先級,否則容易出問題。
2、PWM輸入模式
PWM輸入模式是輸入捕捉模式的高級應(yīng)用,對于測量頻率較高的輸入信號的頻率特別精確,當然,為了實現(xiàn)這個模式,也得做出一點犧牲。相比于基本輸入捕捉功能的實現(xiàn)來說,PWM輸入模式中,一路輸入信號同時映射到兩個引腳,而且只有第一和第二通道可以配置為這種模式,換句話說,每個通用定時器只能測量一路輸入信號,具體配置過程,詳見程序說明。
下面是TIM2的第二通道工作于PWM輸入捕捉模式時的模塊配置程序:
void TIM_Configuration(void)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_ICInitStructure.TIM_Channel =TIM_Channel_2;
TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter =0x00;
TIM_PWMIConfig(TIM2,&TIM_ICInitStructure);
TIM_SelectInputTrigger(TIM2,TIM_TS_TI2FP2);
TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset);
TIM_SelectMasterSlaveMode(TIM2,TIM_MasterSlaveMode_Enable);
TIM_ITConfig(TIM2, TIM_IT_CC2, ENABLE);
TIM_Cmd(TIM2, ENABLE);
voidTIM2_IRQHandler(void)
{
static float IC2Value =0;
static float DutyCycle =0;
static float Frequency =0;
static float Paulse = 0;
IC2Value = TIM_GetCapture2(TIM2);
Paulse = TIM_GetCapture1(TIM2);
DutyCycle = Paulse /IC2Value;
Frequency = 72000000 / IC2Value;
printf("\r\n The DutyCycle ofinput pulse is %%%d \r\n" , (u32)(DutyCycle * 100));
printf("\r\n The Frequency ofinput pulse is %.2fKHz\r\n" , (Frequency / 1000));
TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);
}
關(guān)于PWM輸入模式工作過程的詳細說明:(打字麻煩,所以直接截圖過來)

|