com口是RS232電平,判斷方法可以用萬用表測測電壓,就知道了,TTL電平只有正沒有負,而RS232電平有負值
RS-232C
對電器特性、邏輯電平和各種信號線功能都作了規定。
在TxD和RxD上:
邏輯1(MARK)=-3V~-15V
邏輯0(SPACE)=+3~+15V
在RTS、CTS、DSR、DTR和DCD等控制線上:
信號有效(接通,ON狀態,正電壓)=+3V~+15V
信號無效(斷開,OFF狀態,負電壓)=-3V~-15V
TTL輸出高電平>2.4V,輸出低電平<0.4V。
在室溫下,一般輸出高電平是3.5V,輸出低電平是0.2V。
最小輸入高電平和低電平:輸入高電平>=2.0V,輸入低電平<=0.8V,噪聲容限是0.4V。
rs232電平和TTL不可以直連,所以我沒使用單片機與電腦通訊的時候需要加一個電平轉換芯片,也就是常用的MAX232芯片。
RS232電平或者說串口電平指得都是計算機9針串口的電平,采用負邏輯:-15v ~ -3v 代表1 ,+3v ~ +15v 代表0 。
RS485電平和RS422電平:由于兩者均采用差分傳輸(平衡傳輸)的方式,所以它們的電平方式,一般有兩個引腳 A,B 發送端 AB間的電勢差U為UB-UA: +2 ~ +6v : 1 ,-2 ~ -6v : 0 ,接收端 AB間的電勢差U為:大于 +200mv: 1 ,小于 -200mv: 0 ,定義邏輯1為B>A的狀態,定義邏輯0為B<A的狀態 ,AB之間的電壓差不小于200mv 。
USB電平:電源線是5V,為USB設備提供最大500mA的電流,它與數據線上的電平無關,數據線是差分信號,通常D+和D-在+400mV~-400mV間變化,在傳統的單端(Single-ended)通信中,一條線路來傳輸一個比特位。高電平表示1,低電平表示0。倘若在數據傳輸過程中受到干擾,高低電平信號完全可能因此產生突破臨界值的大幅度擾動,一旦高電平或低電平信號超出臨界值,信號就會出錯。在差分傳輸電路中,輸出電平為正電壓時表示邏輯“1”,輸出負電壓時表示邏輯“0”,而輸出“0”電壓是沒有意義的,它既不代表“1”,也不代表“0”。而差分通信中,干擾信號會同時進入相鄰的兩條信號線中,在信號接收端,兩個相同的干擾信號分別進入差分放大器的兩個反相輸入端后,輸出電壓為0。所以說,差分信號技術對干擾信號具有很強的免疫力。對于串行傳輸來說,LVDS能夠低于外來干擾;而對于并行傳輸來說,LVDS可以不僅能夠抵御外來干擾,還能夠抵御數據傳輸線之間的串擾。因為上述原因,實際電路中只要使用低壓差分信號(Low Voltage Differential Signal,LVDS),350mV左右的振幅便能滿足近距離傳輸的要求。假定負載電阻為100Ω,采用LVDS方式傳輸數據時,如果雙絞線長度為10m,傳輸速率可達400 Mbps;當電纜長度增加到20m時,速率降為100 Mbps;而當電纜長度為100m時,速率只能達到10 Mbps左右。
RS232 可做到雙向傳輸,全雙工通訊 最高傳輸速率 20kbps 。
422 只能做到單向傳輸,半雙工通訊,最高傳輸速率10Mbps 。
485 雙向傳輸,半雙工通訊, 最高傳輸速率10Mbps 。
USB 可以自動選擇HS(High-Speed,高速,480 Mbps)、FS(Full-Speed,全速,12Mbps)和LS(Low-Speed,低速,1.5Mbps)三種模式中的一種。
現在常用的電平標準有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,還有一些速度比較高的 LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面簡單介紹一下各自的供電電源、電平標準以及使用注意事項。
TTL:Transistor-Transistor Logic 三極管結構。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因為2.4V與5V之間還有很大空閑,對改善噪聲容限并沒什么好處,又會白白增大系統功耗,還會影響速度。所以后來就把一部分“砍”掉了。也就是后面的LVTTL。
LVTTL又分3.3V、2.5V以及更低電壓的LVTTL(Low Voltage TTL)。
3.3V LVTTL:
Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL:
Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常用就先不講了。多用在處理器等高速芯片,使用時查看芯片手冊就OK了。
TTL使用注意:TTL電平一般過沖都會比較嚴重,可能在始端串22歐或33歐電阻;TTL電平輸入腳懸空時是內部認為是高電平。要下拉的話應用1k以下電阻下拉。TTL輸出不能驅動CMOS輸入。
CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。
相對TTL有了更大的噪聲容限,輸入阻抗遠大于TTL輸入阻抗。對應3.3V LVTTL,出現了LVCMOS,可以與3.3V的LVTTL直接相互驅動。
3.3V LVCMOS:
Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。
2.5V LVCMOS:
Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。
CMOS使用注意:CMOS結構內部寄生有可控硅結構,當輸入或輸入管腳高于VCC一定值(比如一些芯片是0.7V)時,電流足夠大的話,可能引起閂鎖效應,導致芯片的燒毀。
ECL:Emitter Coupled Logic 發射極耦合邏輯電路(差分結構):
Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。
速度快,驅動能力強,噪聲小,很容易達到幾百M的應用。但是功耗大,需要負電源。為簡化電源,出現了PECL(ECL結構,改用正電壓供電)和LVPECL。
PECL(Pseudo/Positive ECL):
Vcc=5V;VOH=4.12V;VOL=3.28V;VIH=3.78V;VIL=3.64V。
LVPELC(Low Voltage PECL):
Vcc=3.3V;VOH=2.42V;VOL=1.58V;VIH=2.06V;VIL=1.94V 。
ECL、PECL、LVPECL使用注意:不同電平不能直接驅動。中間可用交流耦合、電阻網絡或專用芯片進行轉換。以上三種均為射隨輸出結構,必須有電阻拉到一個直流偏置電壓。(如多用于時鐘的LVPECL:直流匹配時用130歐上拉,同時用82歐下拉;交流匹配時用82歐上拉,同時用130歐下拉。但兩種方式工作后直流電平都在1.95V左右。)
前面的電平標準擺幅都比較大,為降低電磁輻射,同時提高開關速度又推出LVDS電平標準。
LVDS:Low Voltage Differential Signaling
差分對輸入輸出,內部有一個恒流源3.5-4mA,在差分線上改變方向來表示0和1。通過外部的100歐匹配電阻(并在差分線上靠近接收端)轉換為±350mV的差分電平。
LVDS使用注意:可以達到600M以上,PCB要求較高,差分線要求嚴格等長,差最好不超過10mil(0.25mm)。100歐電阻離接收端距離不能超過500mil,最好控制在300mil以內。
CML:是內部做好匹配的一種電路,不需再進行匹配。三極管結構,也是差分線,速度能達到3G以上。只能點對點傳輸。
GTL:類似CMOS的一種結構,輸入為比較器結構,比較器一端接參考電平,另一端接輸入信號。1.2V電源供電。
Vcc=1.2V;VOH>=1.1V;VOL<=0.4V;VIH>=0.85V;VIL<=0.75V
PGTL/GTL+:
Vcc=1.5V;VOH>=1.4V;VOL<=0.46V;VIH>=1.2V;VIL<=0.8V
HSTL是主要用于QDR存儲器的一種電平標準:一般有V¬CCIO=1.8V和V¬¬CCIO= 1.5V。和上面的GTL相似,輸入為輸入為比較器結構,比較器一端接參考電平(VCCIO/2),另一端接輸入信號。對參考電平要求比較高(1%精度)。
SSTL主要用于DDR存儲器。和HSTL基本相同。V¬¬CCIO=2.5V,輸入為輸入為比較器結構,比較器一端接參考電平1.25V,另一端接輸入信號。對參考電平要求比較高(1%精度),HSTL和SSTL大多用在300M以下.
|