|
- `resetall
- `timescale 1ns/100ps
- `define TOTAL_BITS 11
- `define EXTEND_CODE 16'hE0
- `define RELEASE_CODE 16'hF0
- `define LEFT_SHIFT 16'h12
- `define RIGHT_SHIFT 16'h59
- module ps2_keyboard_interface (
- clk,
- reset,
- ps2_clk,
- ps2_data,
- rx_extended,
- rx_released,
- rx_shift_key_on,
- rx_scan_code,
- rx_ascii,
- rx_data_ready, // rx_read_o
- rx_read, // rx_read_ack_i
- tx_data,
- tx_write,
- tx_write_ack_o,
- tx_error_no_keyboard_ack
- );
- // Parameters
- // The timer value can be up to (2^bits) inclusive.
- parameter TIMER_60USEC_VALUE_PP = 2950; // Number of sys_clks for 60usec.
- parameter TIMER_60USEC_BITS_PP = 12; // Number of bits needed for timer
- parameter TIMER_5USEC_VALUE_PP = 186; // Number of sys_clks for debounce
- parameter TIMER_5USEC_BITS_PP = 8; // Number of bits needed for timer
- parameter TRAP_SHIFT_KEYS_PP = 0; // Default: No shift key trap.
- // State encodings, provided as parameters
- // for flexibility to the one instantiating the module.
- // In general, the default values need not be changed.
- // State "m1_rx_clk_l" has been chosen on purpose. Since the input
- // synchronizing flip-flops initially contain zero, it takes one clk
- // for them to update to reflect the actual (idle = high) status of
- // the I/O lines from the keyboard. Therefore, choosing 0 for m1_rx_clk_l
- // allows the state machine to transition to m1_rx_clk_h when the true
- // values of the input signals become present at the outputs of the
- // synchronizing flip-flops. This initial transition is harmless, and it
- // eliminates the need for a "reset" pulse before the interface can operate.
- parameter m1_rx_clk_h = 1;
- parameter m1_rx_clk_l = 0;
- parameter m1_rx_falling_edge_marker = 13;
- parameter m1_rx_rising_edge_marker = 14;
- parameter m1_tx_force_clk_l = 3;
- parameter m1_tx_first_wait_clk_h = 10;
- parameter m1_tx_first_wait_clk_l = 11;
- parameter m1_tx_reset_timer = 12;
- parameter m1_tx_wait_clk_h = 2;
- parameter m1_tx_clk_h = 4;
- parameter m1_tx_clk_l = 5;
- parameter m1_tx_wait_keyboard_ack = 6;
- parameter m1_tx_done_recovery = 7;
- parameter m1_tx_error_no_keyboard_ack = 8;
- parameter m1_tx_rising_edge_marker = 9;
- parameter m2_rx_data_ready = 1;
- parameter m2_rx_data_ready_ack = 0;
-
- // I/O declarations
- input clk;
- input reset;
- inout ps2_clk;
- inout ps2_data;
- output rx_extended;
- output rx_released;
- output rx_shift_key_on;
- output [7:0] rx_scan_code;
- output [7:0] rx_ascii;
- output rx_data_ready;
- input rx_read;
- input [7:0] tx_data;
- input tx_write;
- output tx_write_ack_o;
- output tx_error_no_keyboard_ack;
- reg rx_extended;
- reg rx_released;
- reg [7:0] rx_scan_code;
- reg [7:0] rx_ascii;
- reg rx_data_ready;
- reg tx_error_no_keyboard_ack;
- // Internal signal declarations
- wire timer_60usec_done;
- wire timer_5usec_done;
- wire extended;
- wire released;
- wire shift_key_on;
- // NOTE: These two signals used to be one. They
- // were split into two signals because of
- // shift key trapping. With shift key
- // trapping, no event is generated externally,
- // but the "hold" data must still be cleared
- // anyway regardless, in preparation for the
- // next scan codes.
- wire rx_output_event; // Used only to clear: hold_released, hold_extended
- wire rx_output_strobe; // Used to produce the actual output.
- wire tx_parity_bit;
- wire rx_shifting_done;
- wire tx_shifting_done;
- wire [11:0] shift_key_plus_code;
- reg [`TOTAL_BITS-1:0] q;
- reg [3:0] m1_state;
- reg [3:0] m1_next_state;
- reg m2_state;
- reg m2_next_state;
- reg [3:0] bit_count;
- reg enable_timer_60usec;
- reg enable_timer_5usec;
- reg [TIMER_60USEC_BITS_PP-1:0] timer_60usec_count;
- reg [TIMER_5USEC_BITS_PP-1:0] timer_5usec_count;
- reg [7:0] ascii; // "REG" type only because a case statement is used.
- reg left_shift_key;
- reg right_shift_key;
- reg hold_extended; // Holds prior value, cleared at rx_output_strobe
- reg hold_released; // Holds prior value, cleared at rx_output_strobe
- reg ps2_clk_s; // Synchronous version of this input
- reg ps2_data_s; // Synchronous version of this input
- reg ps2_clk_hi_z; // Without keyboard, high Z equals 1 due to pullups.
- reg ps2_data_hi_z; // Without keyboard, high Z equals 1 due to pullups.
- //--------------------------------------------------------------------------
- // Module code
- assign ps2_clk = ps2_clk_hi_z?1'bZ:1'b0;
- assign ps2_data = ps2_data_hi_z?1'bZ:1'b0;
- // Input "synchronizing" logic -- synchronizes the inputs to the state
- // machine clock, thus avoiding errors related to
- // spurious state machine transitions.
- always @(posedge clk)
- begin
- ps2_clk_s <= ps2_clk;
- ps2_data_s <= ps2_data;
- end
- // State register
- always @(posedge clk)
- begin : m1_state_register
- if (reset) m1_state <= m1_rx_clk_h;
- else m1_state <= m1_next_state;
- end
- // State transition logic
- always @(m1_state
- or q
- or tx_shifting_done
- or tx_write
- or ps2_clk_s
- or ps2_data_s
- or timer_60usec_done
- or timer_5usec_done
- )
- begin : m1_state_logic
- // Output signals default to this value, unless changed in a state condition.
- ps2_clk_hi_z <= 1;
- ps2_data_hi_z <= 1;
- tx_error_no_keyboard_ack <= 0;
- enable_timer_60usec <= 0;
- enable_timer_5usec <= 0;
- case (m1_state)
- m1_rx_clk_h :
- begin
- enable_timer_60usec <= 1;
- if (tx_write) m1_next_state <= m1_tx_reset_timer;
- else if (~ps2_clk_s) m1_next_state <= m1_rx_falling_edge_marker;
- else m1_next_state <= m1_rx_clk_h;
- end
-
- m1_rx_falling_edge_marker :
- begin
- enable_timer_60usec <= 0;
- m1_next_state <= m1_rx_clk_l;
- end
- m1_rx_rising_edge_marker :
- begin
- enable_timer_60usec <= 0;
- m1_next_state <= m1_rx_clk_h;
- end
- m1_rx_clk_l :
- begin
- enable_timer_60usec <= 1;
- if (tx_write) m1_next_state <= m1_tx_reset_timer;
- else if (ps2_clk_s) m1_next_state <= m1_rx_rising_edge_marker;
- else m1_next_state <= m1_rx_clk_l;
- end
- m1_tx_reset_timer:
- begin
- enable_timer_60usec <= 0;
- m1_next_state <= m1_tx_force_clk_l;
- end
- m1_tx_force_clk_l :
- begin
- enable_timer_60usec <= 1;
- ps2_clk_hi_z <= 0; // Force the ps2_clk line low.
- if (timer_60usec_done) m1_next_state <= m1_tx_first_wait_clk_h;
- else m1_next_state <= m1_tx_force_clk_l;
- end
- m1_tx_first_wait_clk_h :
- begin
- enable_timer_5usec <= 1;
- ps2_data_hi_z <= 0; // Start bit.
- if (~ps2_clk_s && timer_5usec_done)
- m1_next_state <= m1_tx_clk_l;
- else
- m1_next_state <= m1_tx_first_wait_clk_h;
- end
-
- // This state must be included because the device might possibly
- // delay for up to 10 milliseconds before beginning its clock pulses.
- // During that waiting time, we cannot drive the data (q[0]) because it
- // is possibly 1, which would cause the keyboard to abort its receive
- // and the expected clocks would then never be generated.
- m1_tx_first_wait_clk_l :
- begin
- ps2_data_hi_z <= 0;
- if (~ps2_clk_s) m1_next_state <= m1_tx_clk_l;
- else m1_next_state <= m1_tx_first_wait_clk_l;
- end
- m1_tx_wait_clk_h :
- begin
- enable_timer_5usec <= 1;
- ps2_data_hi_z <= q[0];
- if (ps2_clk_s && timer_5usec_done)
- m1_next_state <= m1_tx_rising_edge_marker;
- else
- m1_next_state <= m1_tx_wait_clk_h;
- end
- m1_tx_rising_edge_marker :
- begin
- ps2_data_hi_z <= q[0];
- m1_next_state <= m1_tx_clk_h;
- end
- m1_tx_clk_h :
- begin
- ps2_data_hi_z <= q[0];
- if (tx_shifting_done) m1_next_state <= m1_tx_wait_keyboard_ack;
- else if (~ps2_clk_s) m1_next_state <= m1_tx_clk_l;
- else m1_next_state <= m1_tx_clk_h;
- end
- m1_tx_clk_l :
- begin
- ps2_data_hi_z <= q[0];
- if (ps2_clk_s) m1_next_state <= m1_tx_wait_clk_h;
- else m1_next_state <= m1_tx_clk_l;
- end
- m1_tx_wait_keyboard_ack :
- begin
- if (~ps2_clk_s && ps2_data_s)
- m1_next_state <= m1_tx_error_no_keyboard_ack;
- else if (~ps2_clk_s && ~ps2_data_s)
- m1_next_state <= m1_tx_done_recovery;
- else m1_next_state <= m1_tx_wait_keyboard_ack;
- end
- m1_tx_done_recovery :
- begin
- if (ps2_clk_s && ps2_data_s) m1_next_state <= m1_rx_clk_h;
- else m1_next_state <= m1_tx_done_recovery;
- end
- m1_tx_error_no_keyboard_ack :
- begin
- tx_error_no_keyboard_ack <= 1;
- if (ps2_clk_s && ps2_data_s) m1_next_state <= m1_rx_clk_h;
- else m1_next_state <= m1_tx_error_no_keyboard_ack;
- end
- default : m1_next_state <= m1_rx_clk_h;
- endcase
- end
- // State register
- always @(posedge clk)
- begin : m2_state_register
- if (reset) m2_state <= m2_rx_data_ready_ack;
- else m2_state <= m2_next_state;
- end
- // State transition logic
- always @(m2_state or rx_output_strobe or rx_read)
- begin : m2_state_logic
- case (m2_state)
- m2_rx_data_ready_ack:
- begin
- rx_data_ready <= 1'b0;
- if (rx_output_strobe) m2_next_state <= m2_rx_data_ready;
- else m2_next_state <= m2_rx_data_ready_ack;
- end
- m2_rx_data_ready:
- begin
- rx_data_ready <= 1'b1;
- if (rx_read) m2_next_state <= m2_rx_data_ready_ack;
- else m2_next_state <= m2_rx_data_ready;
- end
- default : m2_next_state <= m2_rx_data_ready_ack;
- endcase
- end
- // This is the bit counter
- always @(posedge clk)
- begin
- if ( reset
- || rx_shifting_done
- || (m1_state == m1_tx_wait_keyboard_ack) // After tx is done.
- ) bit_count <= 0; // normal reset
- else if (timer_60usec_done
- && (m1_state == m1_rx_clk_h)
- && (ps2_clk_s)
- ) bit_count <= 0; // rx watchdog timer reset
- else if ( (m1_state == m1_rx_falling_edge_marker) // increment for rx
- ||(m1_state == m1_tx_rising_edge_marker) // increment for tx
- )
- bit_count <= bit_count + 1;
- end
- // This signal is high for one clock at the end of the timer count.
- assign rx_shifting_done = (bit_count == `TOTAL_BITS);
- assign tx_shifting_done = (bit_count == `TOTAL_BITS-1);
- // This is the signal which enables loading of the shift register.
- // It also indicates "ack" to the device writing to the transmitter.
- assign tx_write_ack_o = ( (tx_write && (m1_state == m1_rx_clk_h))
- ||(tx_write && (m1_state == m1_rx_clk_l))
- );
- // This is the ODD parity bit for the transmitted word.
- assign tx_parity_bit = ~^tx_data;
- // This is the shift register
- always @(posedge clk)
- begin
- if (reset) q <= 0;
- else if (tx_write_ack_o) q <= {1'b1,tx_parity_bit,tx_data,1'b0};
- else if ( (m1_state == m1_rx_falling_edge_marker)
- ||(m1_state == m1_tx_rising_edge_marker) )
- q <= {ps2_data_s,q[`TOTAL_BITS-1:1]};
- end
- // This is the 60usec timer counter
- always @(posedge clk)
- begin
- if (~enable_timer_60usec) timer_60usec_count <= 0;
- else if (~timer_60usec_done) timer_60usec_count <= timer_60usec_count + 1;
- end
- assign timer_60usec_done = (timer_60usec_count == (TIMER_60USEC_VALUE_PP - 1));
- // This is the 5usec timer counter
- always @(posedge clk)
- begin
- if (~enable_timer_5usec) timer_5usec_count <= 0;
- else if (~timer_5usec_done) timer_5usec_count <= timer_5usec_count + 1;
- end
- assign timer_5usec_done = (timer_5usec_count == TIMER_5USEC_VALUE_PP - 1);
- // Create the signals which indicate special scan codes received.
- // These are the "unlatched versions."
- assign extended = (q[8:1] == `EXTEND_CODE) && rx_shifting_done;
- assign released = (q[8:1] == `RELEASE_CODE) && rx_shifting_done;
- // Store the special scan code status bits
- // Not the final output, but an intermediate storage place,
- // until the entire set of output data can be assembled.
- always @(posedge clk)
- begin
- if (reset || rx_output_event)
- begin
- hold_extended <= 0;
- hold_released <= 0;
- end
- else
- begin
- if (rx_shifting_done && extended) hold_extended <= 1;
- if (rx_shifting_done && released) hold_released <= 1;
- end
- end
- // These bits contain the status of the two shift keys
- always @(posedge clk)
- begin
- if (reset) left_shift_key <= 0;
- else if ((q[8:1] == `LEFT_SHIFT) && rx_shifting_done && ~hold_released)
- left_shift_key <= 1;
- else if ((q[8:1] == `LEFT_SHIFT) && rx_shifting_done && hold_released)
- left_shift_key <= 0;
- end
- always @(posedge clk)
- begin
- if (reset) right_shift_key <= 0;
- else if ((q[8:1] == `RIGHT_SHIFT) && rx_shifting_done && ~hold_released)
- right_shift_key <= 1;
- else if ((q[8:1] == `RIGHT_SHIFT) && rx_shifting_done && hold_released)
- right_shift_key <= 0;
- end
- assign rx_shift_key_on = left_shift_key || right_shift_key;
- // Output the special scan code flags, the scan code and the ascii
- always @(posedge clk)
- begin
- if (reset)
- begin
- rx_extended <= 0;
- rx_released <= 0;
- rx_scan_code <= 0;
- rx_ascii <= 0;
- end
- else if (rx_output_strobe)
- begin
- rx_extended <= hold_extended;
- rx_released <= hold_released;
- rx_scan_code <= q[8:1];
- rx_ascii <= ascii;
- end
- end
- // Store the final rx output data only when all extend and release codes
- // are received and the next (actual key) scan code is also ready.
- // (the presence of rx_extended or rx_released refers to the
- // the current latest scan code received, not the previously latched flags.)
- assign rx_output_event = (rx_shifting_done
- && ~extended
- && ~released
- );
- assign rx_output_strobe = (rx_shifting_done
- && ~extended
- && ~released
- && ( (TRAP_SHIFT_KEYS_PP == 0)
- || ( (q[8:1] != `RIGHT_SHIFT)
- &&(q[8:1] != `LEFT_SHIFT)
- )
- )
- );
- // This part translates the scan code into an ASCII value...
- // Only the ASCII codes which I considered important have been included.
- // if you want more, just add the appropriate case statement lines...
- // (You will need to know the keyboard scan codes you wish to assign.)
- // The entries are listed in ascending order of ASCII value.
- assign shift_key_plus_code = {3'b0,rx_shift_key_on,q[8:1]};
- always @(shift_key_plus_code)
- begin
- casez (shift_key_plus_code)
- 12'h?66 : ascii <= 8'h08; // Backspace ("backspace" key)
- 12'h?0d : ascii <= 8'h09; // Horizontal Tab
- 12'h?5a : ascii <= 8'h0d; // Carriage return ("enter" key)
- 12'h?76 : ascii <= 8'h1b; // Escape ("esc" key)
- 12'h?29 : ascii <= 8'h20; // Space
- 12'h116 : ascii <= 8'h21; // !
- 12'h152 : ascii <= 8'h22; // "
- 12'h126 : ascii <= 8'h23; // #
- 12'h125 : ascii <= 8'h24; // $
- 12'h12e : ascii <= 8'h25; // %
- 12'h13d : ascii <= 8'h26; // &
- 12'h052 : ascii <= 8'h27; // '
- 12'h146 : ascii <= 8'h28; // (
- 12'h145 : ascii <= 8'h29; // )
- 12'h13e : ascii <= 8'h2a; // *
- 12'h155 : ascii <= 8'h2b; // +
- 12'h041 : ascii <= 8'h2c; // ,
- 12'h04e : ascii <= 8'h2d; // -
- 12'h049 : ascii <= 8'h2e; // .
- 12'h04a : ascii <= 8'h2f; // /
- 12'h045 : ascii <= 8'h30; // 0
- 12'h016 : ascii <= 8'h31; // 1
- 12'h01e : ascii <= 8'h32; // 2
- 12'h026 : ascii <= 8'h33; // 3
- 12'h025 : ascii <= 8'h34; // 4
- 12'h02e : ascii <= 8'h35; // 5
- 12'h036 : ascii <= 8'h36; // 6
- 12'h03d : ascii <= 8'h37; // 7
- 12'h03e : ascii <= 8'h38; // 8
- 12'h046 : ascii <= 8'h39; // 9
- 12'h14c : ascii <= 8'h3a; // :
- 12'h04c : ascii <= 8'h3b; // ;
- 12'h141 : ascii <= 8'h3c; // <
- 12'h055 : ascii <= 8'h3d; // =
- 12'h149 : ascii <= 8'h3e; // >
- 12'h14a : ascii <= 8'h3f; // ?
- 12'h11e : ascii <= 8'h40; // @
- 12'h11c : ascii <= 8'h41; // A
- 12'h132 : ascii <= 8'h42; // B
- 12'h121 : ascii <= 8'h43; // C
- 12'h123 : ascii <= 8'h44; // D
- 12'h124 : ascii <= 8'h45; // E
- 12'h12b : ascii <= 8'h46; // F
- 12'h134 : ascii <= 8'h47; // G
- 12'h133 : ascii <= 8'h48; // H
- 12'h143 : ascii <= 8'h49; // I
- 12'h13b : ascii <= 8'h4a; // J
- 12'h142 : ascii <= 8'h4b; // K
- 12'h14b : ascii <= 8'h4c; // L
- 12'h13a : ascii <= 8'h4d; // M
- 12'h131 : ascii <= 8'h4e; // N
- 12'h144 : ascii <= 8'h4f; // O
- 12'h14d : ascii <= 8'h50; // P
- 12'h115 : ascii <= 8'h51; // Q
- 12'h12d : ascii <= 8'h52; // R
- 12'h11b : ascii <= 8'h53; // S
- 12'h12c : ascii <= 8'h54; // T
- 12'h13c : ascii <= 8'h55; // U
- 12'h12a : ascii <= 8'h56; // V
- 12'h11d : ascii <= 8'h57; // W
- 12'h122 : ascii <= 8'h58; // X
- 12'h135 : ascii <= 8'h59; // Y
- 12'h11a : ascii <= 8'h5a; // Z
- 12'h054 : ascii <= 8'h5b; // [
- 12'h05d : ascii <= 8'h5c; // \
- 12'h05b : ascii <= 8'h5d; // ]
- 12'h136 : ascii <= 8'h5e; // ^
- 12'h14e : ascii <= 8'h5f; // _
- 12'h00e : ascii <= 8'h60; // `
- 12'h01c : ascii <= 8'h61; // a
- 12'h032 : ascii <= 8'h62; // b
- 12'h021 : ascii <= 8'h63; // c
- 12'h023 : ascii <= 8'h64; // d
- 12'h024 : ascii <= 8'h65; // e
- 12'h02b : ascii <= 8'h66; // f
- 12'h034 : ascii <= 8'h67; // g
- 12'h033 : ascii <= 8'h68; // h
- 12'h043 : ascii <= 8'h69; // i
- 12'h03b : ascii <= 8'h6a; // j
- 12'h042 : ascii <= 8'h6b; // k
- 12'h04b : ascii <= 8'h6c; // l
- 12'h03a : ascii <= 8'h6d; // m
- 12'h031 : ascii <= 8'h6e; // n
- 12'h044 : ascii <= 8'h6f; // o
- 12'h04d : ascii <= 8'h70; // p
- 12'h015 : ascii <= 8'h71; // q
- 12'h02d : ascii <= 8'h72; // r
- 12'h01b : ascii <= 8'h73; // s
- 12'h02c : ascii <= 8'h74; // t
- 12'h03c : ascii <= 8'h75; // u
- 12'h02a : ascii <= 8'h76; // v
- 12'h01d : ascii <= 8'h77; // w
- 12'h022 : ascii <= 8'h78; // x
- 12'h035 : ascii <= 8'h79; // y
- 12'h01a : ascii <= 8'h7a; // z
- 12'h154 : ascii <= 8'h7b; // {
- 12'h15d : ascii <= 8'h7c; // |
- 12'h15b : ascii <= 8'h7d; // }
- 12'h10e : ascii <= 8'h7e; // ~
- 12'h?71 : ascii <= 8'h7f; // (Delete OR DEL on numeric keypad)
- default : ascii <= 8'h2e; // '.' used for unlisted characters.
- endcase
- end
- endmodule
- //`undefine TOTAL_BITS
- //`undefine EXTEND_CODE
- //`undefine RELEASE_CODE
- //`undefine LEFT_SHIFT
- //`undefine RIGHT_SHIFT
復(fù)制代碼
|
|