|
最短路徑尋優(yōu)
(以下關(guān)于Dijstra的說明,是借用算法與數(shù)據(jù)結(jié)構(gòu)的發(fā)帖說明、侵權(quán)即刪)原帖鏈接最短路徑尋優(yōu)如上圖所示、如何尋求從 A 出發(fā)到 G 點(diǎn)的最短路徑呢?Dijstra算法就是要求出這個最短的路徑;
讓我們來演示一下迪杰斯特拉的詳細(xì)過程: 第1步,創(chuàng)建距離表。表中的Key是頂點(diǎn)名稱,Value是從起點(diǎn)A到對應(yīng)頂點(diǎn)的已知最短距離。 但是,一開始我們并不知道A到其他頂點(diǎn)的最短距離是多少,Value默認(rèn)是無限大:
第2步,遍歷起點(diǎn)A,找到起點(diǎn)A的鄰接頂點(diǎn)B和C。從A到B的距離是5,從A到C的距離是2。把這一信息刷新到距離表當(dāng)中:
第3步,從距離表中找到從A出發(fā)距離最短的點(diǎn),也就是頂點(diǎn)C。第4步,遍歷頂點(diǎn)C,找到頂點(diǎn)C的鄰接頂點(diǎn)D和F(A已經(jīng)遍歷過,不需要考慮!!!!!!!!!!代碼編寫中就需要注意這一點(diǎn))。從C到D的距離是6,所以A到D的距離是2+6=8;從C到F的距離是8,所以從A到F的距離是2+8=10。把這一信息刷新到表中:
接下來重復(fù)第3步、第4步所做的操作:第5步,也就是第3步的重復(fù),從距離表中找到從A出發(fā)距離最短的點(diǎn)(C已經(jīng)遍歷過,不需要考慮),也就是頂點(diǎn)B。第6步,也就是第4步的重復(fù),遍歷頂點(diǎn)B,找到頂點(diǎn)B的鄰接頂點(diǎn)D和E(A已經(jīng)遍歷過,不需要考慮)。從B到D的距離是1,所以A到D的距離是5+1=6,小于距離表中的8;從B到E的距離是6,所以從A到E的距離是5+6=11。把這一信息刷新到表中:
(在第6步,A到D的距離從8刷新到6,可以看出距離表所發(fā)揮的作用。距離表通過迭代刷新,用新路徑長度取代舊路徑長度,最終可以得到從起點(diǎn)到其他頂點(diǎn)的最短距離)第7步,從距離表中找到從A出發(fā)距離最短的點(diǎn)(B和C不用考慮),也就是頂點(diǎn)D。第8步,遍歷頂點(diǎn)D,找到頂點(diǎn)D的鄰接頂點(diǎn)E和F。從D到E的距離是1,所以A到E的距離是6+1=7,小于距離表中的11;從D到F的距離是2,所以從A到F的距離是6+2=8,小于距離表中的10。把這一信息刷新到表中:
第9步,從距離表中找到從A出發(fā)距離最短的點(diǎn),也就是頂點(diǎn)E。第10步,遍歷頂點(diǎn)E,找到頂點(diǎn)E的鄰接頂點(diǎn)G。從E到G的距離是7,所以A到G的距離是7+7=14。把這一信息刷新到表中:
第11步,從距離表中找到從A出發(fā)距離最短的點(diǎn),也就是頂點(diǎn)F。第10步,遍歷頂點(diǎn)F,找到頂點(diǎn)F的鄰接頂點(diǎn)G。從F到G的距離是3,所以A到G的距離是8+3=11,小于距離表中的14。把這一信息刷新到表中:
就這樣,除終點(diǎn)以外的全部頂點(diǎn)都已經(jīng)遍歷完畢,距離表中存儲的是從起點(diǎn)A到所有頂點(diǎn)的最短距離。顯然,從A到G的最短距離是11。(路徑:A-B-D-F-G)
下面附上算法的C++實(shí)現(xiàn)
- // dijstra.cpp : 此文件包含 "main" 函數(shù)。程序執(zhí)行將在此處開始并結(jié)束。
- //
- //利用狀態(tài)機(jī)來描述 dijstra算法
- //尋求最短路徑
- #include "pch.h"
- #include <iostream>
- using namespace std;
- typedef struct {
- char nextPointName;
- int distance;
- }NEXT_POINT;
- typedef struct {
- int curVaule;
- int expandFlag;
- char name;
- int linkNum;
- NEXT_POINT nextPoint[5];
- char route[10] = {'A'};
- }POINT;
- POINT A = { 1000,0,'A' ,2,'B',5,'C',2};
- POINT B = { 1000,0,'B' ,2,'D',1,'E',6};
- POINT C = { 1000,0,'C' ,2,'D',6,'F',8};
- POINT D = { 1000,0,'D' ,2,'E',1,'F',2};
- POINT E = { 1000,0,'E' ,1,'G',7};
- POINT F = { 1000,0,'F' ,1,'G',3};
- POINT G = { 1000,0,'G' };
- void Dijkstra(POINT* startPoint, POINT* endPoint, POINT* piontArray, int pointNum);
- int main()
- {
- POINT array[10] = { A,B,C,D,E,F,G };
- Dijkstra(&A,&G,array,7);
-
- cout << " 最短路徑為 "<<G.route <<endl<<" 最短路徑長度為 "<< G.curVaule << endl;
- system("pause");
- }
- void Dijkstra(POINT* startPoint, POINT* endPoint, POINT* piontArray,int pointNum) {
-
- POINT unexpandPoint[20] = {0};
-
- int leftNum = pointNum;
- POINT expandPoint=*(startPoint);
- int temp = 0;
- for (int i = 0; i < pointNum; ++i) {
- unexpandPoint[i] = piontArray[i];
- }
- unexpandPoint[0].curVaule = 0;
- while (1) {
- expandPoint = unexpandPoint[0];
- for (int i = 0; i < leftNum; ++i) {
- if (expandPoint.curVaule > unexpandPoint[i].curVaule) {
- expandPoint = unexpandPoint[i];
- temp = i;
- }
- }
- if (expandPoint.name == endPoint->name) {
- *(endPoint) = expandPoint;
- break;
- }
- for (int i = 0; i < leftNum; ++i) {
- if (i > temp) {
- unexpandPoint[i - 1] = unexpandPoint[i];
- }
- }
- temp = 0;
- leftNum--;
- for (int i = 0; i < expandPoint.linkNum; ++i) {
- for (int j = 0; j < leftNum; ++j) {
- if (expandPoint.nextPoint[i].nextPointName == unexpandPoint[j].name) {
- if (unexpandPoint[j].curVaule > expandPoint.nextPoint[i].distance + expandPoint.curVaule) {
- unexpandPoint[j].curVaule = expandPoint.nextPoint[i].distance+ expandPoint.curVaule;
- }
- if (unexpandPoint[j].curVaule > 1000) {
- unexpandPoint[j].curVaule -= 1000;
-
- }
- //路徑更新
- for (int k = 0; k < 10; ++k) {
- unexpandPoint[j].route[k] = 0;
- }
- for (int k = 0; k < 10; ++k) {
- if (expandPoint.route[k] != 0) {
- unexpandPoint[j].route[k] = expandPoint.route[k];
- }
- else {
- unexpandPoint[j].route[k] = unexpandPoint[j].name;
- break;
- }
- }
- }
- }
- }
- }
- }
- #if 0
- ##網(wǎng)上查找到的關(guān)于 dajstra 算法的較精簡的代碼例程
- #include<iostream>
- #include<cstring>
- #define INF 10000000
- using namespace std;
- int temp[2005][2005], dis[1005];
- void dijkstra(int n)
- {
- int i, min, flag, j, vis[2005] = { 0 };
- for (i = 1; i <= n; i++) dis[i] = temp[1][i];
- for (i = 1; i < n; i++)
- {
- min = INF;
- flag = 0;
- for (j = 2; j <= n; j++)
- if (min > dis[j] && !vis[j])
- {
- min = dis[j];
- flag = j;
- }
- vis[flag] = 1;
- for (j = 2; j <= n; j++)
- {
- if (dis[j] > min + temp[flag][j] && !vis[j])
- dis[j] = min + temp[flag][j];
- }
- }
- }
- int main()
- {
- int t, i, n, k, m, diss;
- while (cin >> t >> n)
- {
- //memset(temp,INF,sizeof(temp));
- for (int i = 1; i <= 2000; i++) temp[i][i] = 0;
- for (int i = 1; i <= 2000; i++)
- for (int j = 1; j <= 2000; j++)
- temp[i][j] = INF;
- for (int i = 1; i <= t; i++)
- {
- cin >> k >> m >> diss;
- if (diss < temp[k][m])
- {
- temp[k][m] = diss;//雙向?qū)?
- temp[m][k] = diss;
- }
- }
- dijkstra(n);
- //for(int i=1;i<=t;i++) cout<<dis[i]<<endl;
- cout << dis[n] << endl;
- }
- return 0;
- }
- #endif
- typedef struct {
- float x[2]; /* state: [0]-angle [1]-diffrence of angle, 2x1 */
- float A[2][2]; /* X(n)=A*X(n-1)+U(n),U(n)~N(0,q), 2x2 */
- float H[2][2]; /* Z(n)=H*X(n)+W(n),W(n)~N(0,r), 1x2 */
- float q[2]; /* process(predict) noise convariance,2x1 [q0,0; 0,q1] */
- float r[2][2]; /* measure noise convariance */
- float p[2][2]; /* estimated error convariance,2x2 [p0 p1; p2 p3] */
- float gain[2][2]; /* 2x1 */
- float B[2];
- } kalman2_state;
- //z軸kalman濾波初始化,初始化時用
- // kalman2_init(&BaroAlt_klm);
- //輸入氣壓計高度,速度和慣性坐標(biāo)下的加速度---------輸出高度和速度
- // kalman2_filter(&BaroAlt_klm, BaroAltoo, 0, az_c);
- void kalman2_init(kalman2_state *state)//, float *init_x, float (*init_p)[2]//×îºóÖ»Ðèµ÷ÊÔq[0],q[1];
- {
- // state->x[0] = init_x[0];
- // state->x[1] = init_x[1];
- // state->p[0][0] = init_p[0][0];
- // state->p[0][1] = init_p[0][1];
- // state->p[1][0] = init_p[1][0];
- // state->p[1][1] = init_p[1][1];
- state->x[0] = 0;
- state->x[1] = 0;
- state->p[0][0] = 1;
- state->p[0][1] = 0;
- state->p[1][0] = 0;
- state->p[1][1] = 1;
- // state->A = {{1, 0.1}, {0, 1}};
- state->A[0][0] = 1;
- state->A[0][1] = 0.01;//1;//t¿É±ä Á½¸öÎïÀíʱ¿ÌµÄ²î2ms PID_PIT.I*0.27;//0.0027
- state->A[1][0] = 0;
- state->A[1][1] = 1;
- // state->H = {1,0};
- state->H[0][0] = 1;
- state->H[0][1] = 0;//1
- state->H[1][0] = 0;
- state->H[1][1] = 0;
- // state->q = {{10e-6,0}, {0,10e-6}}; /* measure noise convariance */
- state->q[0] = 5 * 10e-8;//5;//0.0001;//10e-7;//10e-7;
- state->q[1] = 5 * 10e-8;//10e-6;//0.5;//0.0035;//5*10e-7;
- state->r[0][0] = 1 * 10e-7;//10e-4;//52.4586;//0.1;//10e-3;//10e-7; /* estimated error convariance */PID_ROL.D*
- state->r[0][1] = 0;
- state->r[1][0] = 0;
- state->r[1][1] = 4 * 10e-4;
- // state->B
- state->B[0] = state->A[0][1] * state->A[0][1] / 2.0;
- state->B[1] = state->A[0][1];
- }
- float kalman2_filter(kalman2_state *state, float x_weiyi, float x_speed, float a)//£¨¶þά¿¨¶ûÂüÂ˲¨£©Ö»±äÒ»¸ö£¬Ðè¸Ä½øÎ»ÒÆ¡¢ËÙ¶È,ÕæÕýµÄ¼ÓËÙ¶È£¨Ð޸ĺó£©
- {
- float temp0 = 0.0f;
- float temp1 = 0.0f;
- float temp0_0 = 0.0f;
- float temp0_1 = 0.0f;
- float temp1_0 = 0.0f;
- float temp1_1 = 0.0f;
- float temp00 = 0.0f;
- float temp01 = 0.0f;
- float temp10 = 0.0f;
- float temp11 = 0.0f;
- /* Step1: Predict X(k+1)= A*X(k) +B*U(k)*/
- state->x[0] = state->A[0][0] * state->x[0] + state->A[0][1] * state->x[1] + state->B[0] * a;//ת»»Íê×ø±ê·½¿ÉʹÓÃ
- state->x[1] = state->A[1][0] * state->x[0] + state->A[1][1] * state->x[1] + state->B[1] * a;
- /* Step2: Covariance Predict P(k+1)=A*P(k)*(A^T)+Q;*/
- state->p[0][0] = (state->p[0][0] + state->p[1][0] * state->A[0][1]) + (state->p[0][1] + state->p[1][1] * state->A[0][1])*state->A[0][1] + state->q[0];
- state->p[0][1] = state->p[0][1] + state->p[1][1] * state->A[0][1];//+state->q[0];
- state->p[1][0] = state->p[1][0] + state->p[1][1] * state->A[0][1];//+state->q[1];
- state->p[1][1] = state->p[1][1] + state->q[1];
- /* Step3: Gain Measurement : gain = p * H^T * [r + H * p * H^T]^(-1), H^T means transpose. µÚÈý¸ö¹«Ê½×ª»»*/
- temp0_0 = (state->p[0][0] + state->r[0][0])*(state->p[1][1] + state->r[1][1]) - (state->p[0][1] + state->r[0][1])*(state->p[1][0] + state->r[1][0]);//ÕýÈ·//r¶Ô½ÇÕó
- temp0_1 = (state->p[0][0] + state->r[0][0])*(state->p[1][1] + state->r[1][1]) - (state->p[0][1] + state->r[0][1])*(state->p[1][0] + state->r[1][0]);
- temp1_0 = (state->p[0][0] + state->r[0][0])*(state->p[1][1] + state->r[1][1]) - (state->p[0][1] + state->r[0][1])*(state->p[1][0] + state->r[1][0]);
- temp1_1 = (state->p[0][0] + state->r[0][0])*(state->p[1][1] + state->r[1][1]) - (state->p[0][1] + state->r[0][1])*(state->p[1][0] + state->r[1][0]);
- temp00 = state->p[1][1] / temp0_0;
- temp01 = -state->p[0][1] / temp0_1;
- temp10 = -state->p[1][0] / temp1_0;
- temp11 = state->p[0][0] / temp1_1;
- state->gain[0][0] = state->p[0][0] * temp00 + state->p[0][1] * temp10;
- state->gain[0][1] = state->p[0][0] * temp01 + state->p[0][1] * temp11;
- state->gain[1][0] = state->p[1][0] * temp00 + state->p[1][1] * temp10;
- state->gain[1][1] = state->p[1][0] * temp01 + state->p[1][1] * temp11;
- /* Step4: Status Update : x(n|n) = x(n|n-1) + gain(n) * [z_measure - H(n)*x(n|n-1)]*/
- state->x[0] = state->x[0] + state->gain[0][0] * (x_weiyi - state->x[0]) + state->gain[0][1] * (x_speed - state->x[1]); //ΪºÎÖ»ÓÃÒ»¸ö²ÎÊý
- state->x[1] = state->x[1] + state->gain[1][0] * (x_weiyi - state->x[0]) + state->gain[1][1] * (x_speed - state->x[1]);
- /* Step5: Covariance Update p: p(n|n) = [I - gain * H] * p(n|n-1) ¸üÐÂp*/
- temp0 = state->p[0][0];
- temp1 = state->p[0][1];
- state->p[0][0] = (1 - state->gain[0][0]) * state->p[0][0] - (state->gain[0][1] * state->p[1][0]);
- state->p[0][1] = (1 - state->gain[0][0]) * state->p[0][1] - (state->gain[0][1] * state->p[1][1]);
- state->p[1][0] = (1 - state->gain[1][1]) * state->p[1][0] - state->gain[1][0] * temp0;//state->p[0][0]
- state->p[1][1] = (1 - state->gain[1][1]) * state->p[1][1] - state->gain[1][0] * temp1;//state->p[0][1]
- return 1;
- }
復(fù)制代碼 全部資料51hei下載地址:
Dijstra.rar
(3 KB, 下載次數(shù): 9)
2019-5-17 11:24 上傳
點(diǎn)擊文件名下載附件
單純的c代碼、課件里vc,vs的工程導(dǎo)入代碼后查看運(yùn)行結(jié)果 下載積分: 黑幣 -5
|
評分
-
查看全部評分
|