本壓縮文件是組合導航常用的算法
組合導航,帶有數據,可以直接用
0.png (46.98 KB, 下載次數: 83)
下載附件
2018-6-19 18:47 上傳
全部資料51hei下載地址:
GPS和INS聯合導航matlab程序(帶數據有用的).zip
(620.09 KB, 下載次數: 98)
2018-6-19 15:03 上傳
點擊文件名下載附件
組合導航 下載積分: 黑幣 -5
- %GPS/INS無反饋位置組合 卡爾曼濾波器
- %%%%%%%%%%%%%%%%%%
- %edit by horsejun
- %%%%%%%%%%%%%%%%%%
- %每秒更新一次速度位置誤差
- %連續狀態系統方程
- %dx = F*x + G*w
- %z = H*x + v
- %離散狀態系統方程
- %x(k+1) = A*x(k) + B*w(k)
- %z(k+1) = C*x(k+1) + v(k+1)
- function [E_attitude, E_velocity, E_position, PP] = kalman_GPS_INS_position_sp_NFb(Dp, v, p, quat, Fn, Q, R, Tg, Ta, tao)
- %輸入
- %Dp 量測位置誤差, 作為濾波器輸入,
- %Dv 量測速度誤差, 作為濾波器輸入,
- %p ins輸出位置,作為濾波器系統參數
- %v ins輸出速度,作為濾波器系統參數
- %fn ins輸出導航系下比力,作為濾波器參數
- %quat ins輸出四元數,作為濾波器參數
- %Q 系統噪聲方差
- %R 測量噪聲方差
- %Ta 加表誤差漂移相關時間
- %Tg 陀螺儀誤差漂移相關時間
- %tao 迭代步長
- %%%%%%%輸入向量均為行向量%%%%%%%%%%%%%
- %輸出
- %E_position 位置預測值
- %E-velocity 速度預測值
- %各參數初始化
- Re = 6378245; %地球長半徑
- e = 1/298.257; %地球扁率
- wie = 7.292e-5; %地球自轉角速度
- % 東北天速度
- Ve0 = v(:,1);
- Vn0 = v(:,2);
- Vu0 = v(:,3);
- % 導航位置
- L0 = p(:,1);
- h0 = p(:,3);
- %卡爾曼濾波參數初始化
- PP(1:18,1:18) = diag([1/(36*57) 1/(36*57) 1/57, 0.0001 0.0001 0.0001, 0 0 1, 0.1/(57*3600) 0.1/(57*3600) 0.1/(57*3600), 0.04/(57*3600) 0.04/(57*3600) 0.04/(57*3600), 1e-4 1e-4 1e-4].^2); %初始誤差協方差陣
- PP0 = PP;
- X = zeros(18,1); %初始狀態
- E_attitude = zeros(1,3);
- E_position = zeros(1,3);
- E_velocity = zeros(1,3);
- n = size(Dp,1);
- for i=1:n-1
- %參數賦值
- Ve = Ve0(i);
- Vn = Vn0(i);
- Vu = Vu0(i);
- L = L0(i);
- h = h0(i);
- fe = Fn(i,1);
- fn = Fn(i,2);
- fu = Fn(i,3);
- Rm = Re*(1-2*e+3*e*sin(L)^2);
- Rn = Re*(1-e*sin(L)^2);
- %由四元數計算姿態陣
- q = quat(i,:);
- Cnb = [1-2*(q(3)^2+q(4)^2), 2*(q(2)*q(3)-q(1)*q(4)), 2*(q(2)*q(4)+q(1)*q(3));
- 2*(q(2)*q(3)+q(1)*q(4)), 1-2*(q(2)^2+q(4)^2), 2*(q(3)*q(4)-q(1)*q(2));
- 2*(q(2)*q(4)-q(1)*q(3)), 2*(q(3)*q(4)+q(1)*q(2)), 1-2*(q(2)^2+q(3)^2)];
- %連續系統狀態轉換陣 F 的時間更新
- F = zeros(18,18);
- F(1,2) = wie*sin(L)+Ve*tan(L)/(Rn+h);
- F(1,3) = -(wie*cos(L)+Ve/(Rn+h));
- F(1,5) = -1/(Rm+h);
- F(1,9) = Vn/(Rm+h)^2;
- F(2,1) = -(wie*sin(L)+Ve*tan(L)/(Rn+h));
- F(2,3) = -Vn/(Rm+h);
- F(2,4) = 1/(Rn+h);
- F(2,7) = -wie*sin(L);
- F(2,9) = -Ve/(Rn+h)^2;
- F(3,1) = wie*cos(L)+Ve/(Rn+h);
- F(3,2) = Vn/(Rm+h);
- F(3,4) = tan(L)/(Rn+h);
- F(3,7) = wie*cos(L)+Ve*(sec(L)^2)/(Rn+h);
- F(3,9) = -Ve*tan(L)/(Rn+h)^2;
- F(4,2) = -fu;
- F(4,3) = fn;
- F(4,4) = Vn*tan(L)/(Rm+h)-Vu/(Rm+h);
- F(4,5) = 2*wie*sin(L)+Ve*tan(L)/(Rn+h);
- F(4,6) = -(2*wie*cos(L)+Ve/(Rn+h));
- F(4,7) = 2*wie*cos(L)*Vn+Ve*Vn*sec(L)^2/(Rn+h)+2*wie*sin(L)*Vu;
- F(4,9) = (Ve*Vu-Ve*Vn*tan(L))/(Rn+h)^2;
- F(5,1) = fu;
- F(5,3) = -fe;
- F(5,4) = -2*(wie*sin(L)+Ve*tan(L)/(Rn+h));
- F(5,5) = -Vu/(Rm+h);
- F(5,6) = -Vn/(Rm+h);
- F(5,7) = -(2*wie*cos(L)+Ve*(sec(L)^2)/(Rn+h))*Ve;
- F(5,9) = (Ve^2*tan(L)+Vn*Vu)/(Rn+h)^2;
- F(6,1) = -fn;
- F(6,2) = fe;
- F(6,4) = 2*(wie*cos(L)+Ve/(Rn+h));
- F(6,5) = 2*Vn/(Rm+h);
- F(6,7) = -2*Ve*wie*sin(L);
- F(6,9) = -(Vn^2+Ve^2)/(Rn+h)^2;
- F(7,5) = 1/(Rm+h);
- F(7,9) = -Vn/(Rm+h)^2;
- F(8,4) = 1/((Rn+h)*cos(L));
- F(8,7) = Ve*tan(L)/((Rn+h)*cos(L));
- F(8,9) = -Ve/(cos(L)*(Rn+h)^2);
- F(9,6) = 1;
- F(1:3,10:12) = Cnb;
- F(1:3,13:15) = Cnb;
- F(4:6,16:18) = Cnb;
- F(13,13) = -1/Tg(1);
- F(14,14) = -1/Tg(2);
- F(15,15) = -1/Tg(3);
- F(16,16) = -1/Ta(1);
- F(17,17) = -1/Ta(2);
- F(18,18) = -1/Ta(3);
- %連續系統輸入矩陣更新
- G = zeros(18,9);
- G(1:3,1:3) = Cnb;
- G(13:15,4:6) = eye(3,3);
- G(16:18,7:9) = eye(3,3);
- %連續系統量測陣更新
- H = zeros(3,18);
- H(1,7) = 1;
- H(2,8) = 1;
- H(3,9) = 1;
- %連續系統離散化
- A = eye(18,18)+F*tao;
- B = (eye(18,18)+tao*F/2)*G*tao;
-
- %卡爾曼濾波
- P = A*(PP0)*A'+B*Q*B';
- K = P*H'*inv(H*P*H'+R);
- PP0 = (eye(18,18)-K*H)*P;
- PP0 = (PP0+PP0')/2;
- PP(i,:) = diag(PP0);
-
- z = Dp(i+1,:)';
- XX = A*X+K*(z-H*A*X);
- X = XX;
- E_attitude(i+1,:) = XX(1:3)';
- E_velocity(i+1,:) = XX(4:6)';
- E_position(i+1,:) = XX(7:9)';
- end
復制代碼- %GPS/INS組合導航
- %%%%%%%%%%%%%%%%%%
- %edit by horsejun
- %%%%%%%%%%%%%%%%%%
- %量測信號: 位置
- %INS輸出數據由simulink計算得出
- clear
- clc
- %得到軌跡信號
- load ode500
- Re = 6378245; %地球長半徑
- %真實軌跡
- a_R = yout(:,1:3);
- v_R = yout(:,4:6);
- p_R = yout(:,7:9);
- %加噪聲后的INS計算結果
- a_ins = yout(:,10:12);
- v_ins = yout(:,13:15);
- p_ins = yout(:,16:18);
- quat = yout(:,19:22); %姿態四元數
- Fn = yout(:,23:25); %地理系下的比力
- %慣導相關的噪聲統計數據
- Q_wg = (0.04/(57*3600))^2; %陀螺馬氏過程
- Q_wr = (0.01/(57*3600))^2; %陀螺白噪聲
- Q_wa = (1e-3)^2; %加計馬氏過程
- Q = diag([Q_wg Q_wg Q_wg, Q_wr Q_wr Q_wr, Q_wa Q_wa Q_wa]);
- Tg = 300*ones(3,1);
- Ta = 1000*ones(3,1);
- %得到帶誤差的GPS輸出信號
- p_gps_sample = p_R(1:10:end,:);
- n = size(p_gps_sample,1);
- p_error(:,1:2) = 30*randn(n,2)/Re;
- p_error(:,3) = 30*randn(n,1); %位置誤差
- p_gps = p_gps_sample+p_error; %加入位置誤差
- R = diag(std(p_error).^2); %計算測量噪聲方差R
- %卡爾曼濾波
- tao= 1; %濾波步長
- a_ins_sample = a_ins(1:10:end,:);
- v_ins_sample = v_ins(1:10:end,:);
- p_ins_sample = p_ins(1:10:end,:);
- a_R_sample = a_R(1:10:end,:);
- v_R_sample = v_R(1:10:end,:);
- p_R_sample = p_R(1:10:end,:);
- Dp= p_ins_sample-p_gps; %INS與GPS輸出的位置差值
- a = a_ins_sample;
- v = v_ins_sample;
- p = p_ins_sample;
- quat0 = quat(1:10:end,:);
- Fn0 = Fn(1:10:end,:);
- [Error_a, Error_v, Error_p, PP] = kalman_GPS_INS_position_sp_NFb(Dp, v, p, quat0, Fn0, Q, R, Tg, Ta, tao); %得到位置,速度誤差誤差估計值
- a_estimate = a(1:size(Error_a,1),:)-Error_a;
- v_estimate = v(1:size(Error_v,1),:)-Error_v;
- p_estimate = p(1:size(Error_p,1),:)-Error_p;
- n = size(p_estimate,1); %行數
- %位置誤差比較
- figure
- subplot(3,1,1)
- plot((1:n),(p_R_sample(1:n,1)-p(1:n,1))*6e6,'k',(1:n),(p_R_sample(1:n,1)-p_estimate(:,1))*6e6,'r') %黑線-濾波前的誤差 紅線-濾波后的誤差
- xlabel('時間,單位s')
- subplot(3,1,2)
- plot((1:n),(p_R_sample(1:n,2)-p(1:n,2))*6e6,'k',(1:n),(p_R_sample(1:n,2)-p_estimate(:,2))*6e6,'r') %黑線-濾波前的誤差 紅線-濾波后的誤差
- ylabel('位置誤差,單位m')
- subplot(3,1,3)
- plot((1:n),p_R_sample(1:n,3)-p(1:n,3),'k',(1:n),p_R_sample(1:n,3)-p_estimate(:,3),'r') %黑線-濾波前的誤差 紅線-濾波后的誤差
- xlabel('黑線-濾波前的INS誤差 紅線-濾波后的誤差')
- %速度誤差比較
- figure
- subplot(3,1,1)
- plot((1:n),v_R_sample(1:n,1)-v(1:n,1),'k',(1:n),v_R_sample(1:n,1)-v_estimate(:,1),'r') %黑線-濾波前的誤差 紅線-濾波后的誤差
- xlabel('時間,單位s')
- subplot(3,1,2)
- plot((1:n),v_R_sample(1:n,2)-v(1:n,2),'k',(1:n),v_R_sample(1:n,2)-v_estimate(:,2),'r') %黑線-濾波前的誤差 紅線-濾波后的誤差
- ylabel('速度誤差,單位m/s')
- subplot(3,1,3)
- plot((1:n),v_R_sample(1:n,3)-v(1:n,3),'k',(1:n),v_R_sample(1:n,3)-v_estimate(:,3),'r') %黑線-濾波前的誤差 紅線-濾波后的誤差
- xlabel('黑線-濾波前的INS誤差 紅線-濾波后的誤差')
- %位置誤差
- figure
- subplot(3,1,1)
- xlabel('時間,單位s')
- plot((1:n),(p_R_sample(1:n,1)-p_estimate(:,1))*6370000,'r') %紅線-濾波后的誤差
- subplot(3,1,2)
- plot((1:n),(p_R_sample(1:n,2)-p_estimate(:,2))*6370000,'r') %紅線-濾波后的誤差
- ylabel('位置誤差,單位m')
- subplot(3,1,3)
- plot((1:n),p_R_sample(1:n,3)-p_estimate(:,3),'r') %紅線-濾波后的誤差
- xlabel('濾波后的位置誤差')
- %速度誤差
- figure
- subplot(3,1,1)
- plot((1:n),v_R_sample(1:n,1)-v_estimate(:,1),'r') % 紅線-濾波后的誤差
- xlabel('時間,單位s')
- subplot(3,1,2)
- plot((1:n),v_R_sample(1:n,2)-v_estimate(:,2),'r') %紅線-濾波后的誤差
- ylabel('速度誤差,單位m/s')
- subplot(3,1,3)
- plot((1:n),v_R_sample(1:n,3)-v_estimate(:,3),'r') % 紅線-濾波后的誤差
- xlabel('濾波后的速度誤差')
復制代碼
|